Sugarcane Underground Organs: Going Deep for Sustainable Production

Abstract

Sugarcane breeding has greatly advanced in recent decades, but many aspects of sugarcane physiology are still poorly understood, including the root-shoot relationships that ultimately affect yield. Traditional methods for studying root systems are imprecise due to methodological difficulties of in situ assessment and sampling; this seems especially true for the sugarcane root system. Studies on sugarcane roots lag well behind those on other crops, in part due to the large plant stature and long crop cycle. Commercial sugarcane cultivars are hybrids from crosses mostly between Saccharum officinarum and S. spontaneum made by breeders at the beginning of the last century. These hybrids have a genomic structure composed of 80% S. officinarum, 10% S. spontaneum and 10% recombinants of these two species. S. spontaneum is included in large part for the robustness of its underground organs (root and rhizome). The S. spontaneum genes controlling these characteristics may be lost during recurrent backcrosses with S. officinarum to increase sugar content and yield. Thus, ratooning ability is one of the most desired traits. Ratooning ability comes mainly from the rhizomatousness of S. spontaneum, but this trait has been diluted during the selection process so that the stubble of hybrids does not have rhizomes sensu stricto. In this review, we revisit some basic aspects of the sugarcane root system, mainly from an ecophysiological view, and point out considerations for breeders to consider in designing the architecture of a new sugarcane cultivar that can meet the need for sustainable agricultural production.

This is a preview of subscription content, access via your institution.

Abbreviations

QTLs:

Quantitative Trait Loci

GHG:

Greenhouse Gas

DMA:

Dry Matter Accumulation

SOC:

Soil Organic Carbon

References

  1. Ball-Coelho B, Sampaio EVSB, Tiessen H et al (1992) Root dynamics in plant and ratoon crops of sugarcane. Plant Soil 142:297–305

    Article  Google Scholar 

  2. Bischoff KP, Gravois KA, Reagan TE et al (2008) Registration of ‘L79-1002’ sugarcane. J Plant Regist 2:211–217

    Article  Google Scholar 

  3. Burner DM, Legendre BL (1995) Sugarcane genome amplification for the subtropics: a twenty year effort. Sugar Cane 3:5–10

    Google Scholar 

  4. Canadell J, Jackson RB, Ehleringer JR et al (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  5. Cox TS, Bender M, Picone C et al (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:59–91

    Article  Google Scholar 

  6. Cuadrado A, Acevedo R, Espina MD et al (2004) Genome remodelling in three modern S. officinarum x S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854

    PubMed  Article  CAS  Google Scholar 

  7. D’Hont A, Grivet L, Feldmann P et al (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  8. D’Hont A, Souza GM, Menossi M et al (2008) Sugarcane: a major source of sweetness alcohol and bio-energy. In: Moore PH, Ming R (eds) Genomics of tropical plants. Springer

  9. Dias FLF, Mazza JA, Matsuoka S (1999) Produtividade da cana-de-açúcar em relação a clima e solos da região noroeste do Estado de São Paulo. R Bras Ci Solo 23:627–634

    CAS  Google Scholar 

  10. Dunckelman PH (1974) Production of true seeds from basic lines of Saccharum and related genera in new crosses at Houma, Louisiana. Proc Am Soc Sugar Cane Technol 3:40–41

    Google Scholar 

  11. Eissenstat DM, Yanai RD (2002) Root life span efficiency and turnover. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots the hidden half, 3rd edn. CRC Press, Boca Raton, pp 221–238

    Google Scholar 

  12. Evensen CI, Muchow RC, El-Swaify SA et al (1997) Yield accumulation in irrigated sugarcane I effect of crop age and cultivar. Agron J 89:638–646

    Article  Google Scholar 

  13. Garside AL, Smith MA, Chapman LS et al (1997) The yield plateau in the Australian sugar industry: 1970–1990. In: Keating BA, Wilson JR (eds) Intensive sugarcane production meeting the challenges beyond 2000 CAB international. Wallingford, UK, pp 103–124

    Google Scholar 

  14. Giamalva MJ, Clarke SJ, Stein JM (1984) Sugarcane hybrids of biomass. Biomass 6:61–68

    Article  Google Scholar 

  15. Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  16. Glover J (1967) The simultaneous growth of sugar-cane roots and tops in relation to soil and climate. Proc S Afr Sug Technol Ass 41:143–159

    Google Scholar 

  17. Glover JD, Cox CM, Reganold JP (2007) Future farming: a return to roots? Sci Am 297:82–89

    PubMed  Article  Google Scholar 

  18. Glover JD, Reganold JP, Bell LW et al (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    PubMed  Article  CAS  Google Scholar 

  19. Gonzalez-Herandez JL, Sarath G, Stein JM, Owens V, Gedye K, Boe A (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol Plant 45:267–281

    Article  Google Scholar 

  20. Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  21. Hu FY, Tao DY, Sacks E et al (2003) Convergent evolution of perenniality in rice and sorghum. PNAS 100:4050–4054

    PubMed  Article  CAS  Google Scholar 

  22. Irvine JE, Benda TA (1980) Sugarcane spacing II effects of spacing on the plant. Int Soc Sug Cane Technol Cong Proc 17:357–359

    Google Scholar 

  23. Inman-Bamber NG (1994) Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Res 36:41–51

    Article  Google Scholar 

  24. Jackson J (1994) Genetic relationship between attributes in sugar cane clones related to Saccharum spontaneum. Euphytica 79:101–108

    Article  Google Scholar 

  25. Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305

    Article  CAS  Google Scholar 

  26. Jang CS, Kamps TL, Skinner DN et al (2006) Functional classification genomic organization putatively cis-acting regulatory elements and relationship to quantitative trait loci of sorghum genes with rhizome-enriched expression. Plant Physiol 142:1148–1159

    PubMed  Article  CAS  Google Scholar 

  27. Jang CS, Kamps TL, Tang H et al (2009) Evolutionary fate of rhizome-specific genes in a non-rhizomatous Sorghum genotype. Heredity 102:266–273

    PubMed  Article  CAS  Google Scholar 

  28. Jannoo N, Grivet L, Seguin M et al (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  CAS  Google Scholar 

  29. Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

    Article  CAS  Google Scholar 

  30. Jonhson JMF, Coleman MD, Gesh R, Jaradat A, Mitchell R, Reicosky D, Wilhelm WW (2007) Biomass-bioenergy crops in the United States: a changin paradigm. Americas J Plant Sci Biotechnol 1:1–28

    Google Scholar 

  31. Kalluri UC, Keller M (2010) Bioenergy research: a new paradigm in multidisciplinary research. J R Soc Interface 7:1391–1401

    PubMed  Article  Google Scholar 

  32. Kanwar RS, Sharma KK (1974) Effect of interrow spacing on tiller mortality stalk population and yield of sugarcane. Int Soc Sug Cane Technol Cong Proc 14:741–755

    Google Scholar 

  33. Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91:885–889

    CAS  Google Scholar 

  34. Legendre BL, Burner DM (1995) Biomass production of sugarcane cultivars and early-generation hybrids. Biomass Bioenergy 8:55–61

    Article  Google Scholar 

  35. Lu YH, D’Hont A, Paulet F et al (1994) Molecular diversity and genome structure of modern sugarcane cultivars. Euphytica 78:217–226

    Article  Google Scholar 

  36. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed  CAS  Google Scholar 

  37. Lynch JP (2007) Roots of the second green revolution. Aust Jour Bot 55:493–512

    Article  Google Scholar 

  38. Lynch JP, Whipps JM (1990) Substrate flow in the rizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  39. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  40. Matsumoto H (2002) Plant roots under aluminum stress: Toxicity and tolerance In: Waisel Y, Eshel A, Kafkafi U (eds) Plant Roots: the Hidden Half 3rd ed Marcel Dekker, Madison pp 821–838

  41. Matsuoka S, Arruda P, Ferro J (2009) The Brazilian experience of sugarcane ethanol industry. In Vitro Cell Dev Biol Plant 45:372–381

    Article  Google Scholar 

  42. Matsuoka S, Maccheroni W, Bressiani JA (2010) Bioenergy from sugarcane. In: Santos F, Borém A, Caldas C (eds) Sugarcane bioenergy sugar and alcohol. Universidade Federal de Viçosa, Brazil

    Google Scholar 

  43. Meyer J (2007) Advances in field technology and environmental awareness in the South Africa sugar industry. Sug Cane Int 25:22–28

    Google Scholar 

  44. Ming R, Moore PH, Wu KK et al (2006) Sugarcane Improvement through Breeding and Biotechnology. Pl Breed Rev 27:15–118

    CAS  Google Scholar 

  45. Mislevy P, Martin FG, Adjei MB, Miller JD (1995) Agronomic characteristics of US 72–1153 energycane for biomass. Biomass Bioenergy 9:449–457

    Article  Google Scholar 

  46. Monteith H, Banath CL (1965) The effect of soil strength on sugarcane root growth. Trop Agric (Trinidad) 42:293–296

    Google Scholar 

  47. Moore PH (1987a) Anatomy and morphology. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 85–142

    Google Scholar 

  48. Moore PH (1987b) Breeding for stress resistance. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 503–542

    Google Scholar 

  49. Moore PH (2005) Integration of sucrose accumulation processes across hierarchical scales: towards developing an understanding of the gene-to-crop continuum. Field Crops Res 92:119–135

    Article  Google Scholar 

  50. Muchow RC, Spillman MF, Wood AW et al (1994) Radiation interception and biomass accumulation in a sugarcane crop grown under irrigated tropical conditions. Aust J Agric Res 92(2–3):119–135

    Google Scholar 

  51. Muchow RC, Evensen CI, Osgood RV et al (1997) Yield accumulation in irrigated sugarcane II Utilization of intercepted radiation. Agron J 89:646–652

    Article  Google Scholar 

  52. Nie Z, Norton MR (2009) Stress tolerance and persistence of perennial grasses: the role of the summer dormancy trait in temperate Australia. Crop Sci 49:2405–2411

    Article  Google Scholar 

  53. Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  54. Otto R, Trivelin PCO, Franco HCJ et al (2009) Root system distribution of sugarcane as related to nitrogen fertilization evaluated by two methods: monolith and probe. Rev Bras Ciênc Solo 33:601–611

    Article  CAS  Google Scholar 

  55. Pan Y-B, Burner DM, Legendre BL et al (2004) An assessment of the genetic diversity within a collection of Saccharum spontaneum L with RAPD-PCR. Gen Res Crop Evol 51:895–903

    Article  CAS  Google Scholar 

  56. Passioura JB (1991) Soil structure and plant growth. Aust J Soil Res 29:717–728

    Article  Google Scholar 

  57. Passioura JB (2010) Scaling up: the essence of effective agricultural research. Funct Plant Biol 37:585–591

    Article  Google Scholar 

  58. Paterson AH (2009) Rhizomatousness: genes important for a weediness syndrme. In Stewart Jr CN. Weeding and Invasive Plant Genomes Wiley, pp 99–109

  59. Pierret A (2008) Multi-spectral imaging of rhizobox systems: New perspectives for the observation and discrimination of rhizosphere components. Plant Soil 310:263268

    Article  Google Scholar 

  60. Polomski J, Kuhn N (2002) Root research methods. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 295–321

    Google Scholar 

  61. Reich PB (2002) Root-shoot relations: Optimality in acclimation and adaptation or the emperor‟s new clothes. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots the hidden half, 3rd edn. CRC Press, Boca Raton, pp 205–220

    Google Scholar 

  62. Robertson MJ, Wood AW, Muchow RC (1996) Growth of sugarcane under high input conditions in tropical Australia I Radiation use biomass accumulation and partitioning. Field Crops Res 48:11–25

    Article  Google Scholar 

  63. Sainz MB (2009) Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev Biol Plant 45:314–329

    Article  CAS  Google Scholar 

  64. Segal E, Kushnir T, Mualen Y et al (2008) Water uptake and hydraulics of the root hair. Vadose Zone J 7:1027–1034

    Article  Google Scholar 

  65. Selvi A, Nair NV, Noyer JL et al (2005) Genomic constitucion and genetic relationship among tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci 45:1750–1757

    Article  CAS  Google Scholar 

  66. Singels A, Smit MA (2002) The effect of row spacing on an irrigated plant crop of sugarcane cultivar NCo376. Proc S Afr Sug Technol Ass 76:94–105

    Google Scholar 

  67. Singels A, Donaldson RA, Smit MA (2005) Improving biomass production and partitioning in sugarcane: theory and practice. Field Crops Res 92:291–303

    Article  Google Scholar 

  68. Skaggs TH, Shouse PJ (2008) Roots and root function: introduction. Vadose Zone J 7:1008–1009

    Article  Google Scholar 

  69. Smit MA, Singels A (2006) The response of sugarcane canopy development to water stress. Field Crops Res 98:91–97

    Article  Google Scholar 

  70. Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crops Res 92:169–183

    Article  Google Scholar 

  71. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    PubMed  Article  CAS  Google Scholar 

  72. Tew TL (1987) New cultivars. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 559–594

    Google Scholar 

  73. Tew, TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp) as an energy crop In: Vermerris W (ed) Genetic improvement of bioenergy crops, Springer

  74. Tulinson LG, Liu H, Silk WK et al (2008) Thermal neutron computed tomography of soil water and plant roots. Soil Sci Soc Aust J 72(5):1234–1242

    Google Scholar 

  75. Vasconcelos ACM, Casagrande AA, Perecin D et al (2003) Evaluation of the sugarcane root system with different methods. Rev Bras Ciên Solo 27:849–858

    Google Scholar 

  76. Yang SJ (1977) Soil physical properties and the growth of ratoon cane as influenced by mechanical harvesting. Int Soc Sug Cane Technol Cong Proc 16:835–847

    Google Scholar 

  77. Yuan JS, Tiller KH, Al-Ahmad H et al (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    PubMed  Article  CAS  Google Scholar 

  78. Waisel Y (2002) Aeroponics: a tool for root research under minimal environmental restrictions. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant Roots: the Hidden Half, 3rd edn. Marcel Dekker, New York, pp 323–331

    Google Scholar 

  79. Wang L-P, Jackson PA, Lu X et al (2008) Evaluation of sugarcane x Saccharum spontaneum progeny for biomass composition and yield components. Crop Sci 48:951–961

    Article  Google Scholar 

  80. Wilson J (1974) Production of sugarcane in South Africa. S Afr Sug J 58:243–245

    Google Scholar 

  81. Whitmore AP, Whalley WR (2009) Physical effects of soil drying on roots and crop growth. J Exp Bot 60:2845–2857

    PubMed  Article  CAS  Google Scholar 

  82. Zhou M (2005) The relationship between tiller population development parameters and cane yield of sugarcane. Int Soc Sug Cane Technol Cong Proc 25:443–451

    Google Scholar 

  83. Zhu J, Zhang C, Lynch JP (2010) The utility of phenotypic plasticity for root hair length for phosphorus acquisition. Funct Plant Biol 37:313–322

    Article  Google Scholar 

  84. Zobel RW (1992) Root morphology and development. J Plant Nutr 15:677–684

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sizuo Matsuoka.

Additional information

Communicated by: Paulo Arruda

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matsuoka, S., Garcia, A.A.F. Sugarcane Underground Organs: Going Deep for Sustainable Production. Tropical Plant Biol. 4, 22–30 (2011). https://doi.org/10.1007/s12042-011-9076-3

Download citation

Keywords

  • Saccharum officinarum
  • Saccharum spontaneum
  • Rhizomatousness
  • Sugarcane breeding
  • Energy cane