Tropical Plant Biology

, Volume 1, Issue 3–4, pp 246–277 | Cite as

Fruit Development, Ripening and Quality Related Genes in the Papaya Genome

  • Robert E. Paull
  • Beth Irikura
  • Pingfang Wu
  • Helen Turano
  • Nancy Jung Chen
  • Andrea Blas
  • John K. Fellman
  • Andrea R. Gschwend
  • Ching Man Wai
  • Qingyi Yu
  • Gernot Presting
  • Maqsudul Alam
  • Ray Ming
Article

Abstract

Papaya (Carica papaya L.) is the first fleshy fruit with a climacteric ripening pattern to be sequenced. As a member of the Rosids superorder in the order Brassicales, papaya apparently lacks the genome duplication that occurred twice in Arabidopsis. The predicted papaya genes that are homologous to those potentially involved in fruit growth, development, and ripening were investigated. Genes homologous to those involved in tomato fruit size and shape were found. Fewer predicted papaya expansin genes were found and no Expansin Like-B genes were predicted. Compared to Arabidopsis and tomato, fewer genes that may impact sugar accumulation in papaya, ethylene synthesis and response, respiration, chlorophyll degradation and carotenoid synthesis were predicted. Similar or fewer genes were found in papaya for the enzymes leading to volatile production than so far determined for tomato. The presence of fewer papaya genes in most fruit development and ripening categories suggests less subfunctionalization of gene action. The lack of whole genome duplication and reductions in most gene families and biosynthetic pathways make papaya a valuable and unique tool to study the evolution of fruit ripening and the complex regulatory networks active in fruit ripening.

Keywords

Fruit growth Expansins Ethylene Respiration Carotenoids Chlorophyll Volatiles Sugar accumulation 

Supplementary material

12042_2008_9021_MOESM1_ESM.doc (49 kb)
Supplementary Table 1List of predicted papaya expansins genes, the whole genome shotgun sequence accession number in NCBI (WGS Accession), coding sequence for amino acids (CDS), the number of introns in the nucleotide sequence (introns), amino acids (aa), whether a secretory sequence was predicted (secretory) its location (ER endoplasmic retriculum), presence of discrete portion of protein possessing its own function and the superfamily (domain), similarity in peptide sequence with another species (homology), E-value was the expectation value for homology, and the number of papaya expressed sequence tags (EST) detected of at least 500 bases and 99% identity. (DOC 49 KB)
12042_2008_9021_MOESM2_ESM.doc (54 kb)
Supplementary Table 2Predicted papaya ethylene response factors (ERF), the whole genome shotgun sequence accession number in NCBI (WGS Accession), coding sequence for amino acids (CDS), the number of introns in the nucleotide sequence (introns), amino acids (aa), presence of discrete portion of protein possessing its own function and the superfamily (domain), similarity in peptide sequence with another species (homology), extent the sequences were invariant (identity), E-value was the expectation value for homology, and the number of papaya expressed sequence tags (EST) detected of at least 500 bases and 99% identity. (DOC 54.5 KB)
12042_2008_9021_MOESM3_ESM.doc (24 kb)
Supplementary Table 3Latex associated genes, the whole genome shotgun sequence accession number in NCBI (WGS Accession), coding sequence for amino acids (CDS), amino acids (aa), whether a secretory sequence was predicted (secretory) its location (mito mitchondria), presence of discrete portion of protein possessing its own function and the superfamily (domain), similarity in peptide sequence with another species (homology), extent the sequences were invariant (identity), E-value was the expectation value for homology, and the number of papaya expressed sequence tags (EST) detected of at least 500 bases and 99% identity. (DOC 24 KB)
12042_2008_9021_MOESM4_ESM.doc (54 kb)
Supplementary Table 4Predicted papaya genes for lignin biosynthesis, the whole genome shotgun sequence accession number in NCBI (WGS Accession), coding sequence for amino acids (CDS), the number of introns in the nucleotide sequence (introns), amino acids (aa), presence of discrete portion of protein possessing its own function and the superfamily (domain), similarity in peptide sequence with another species (homology), extent the sequences were invariant (identity), E-value was the expectation value for homology, and the number of papaya expressed sequence tags (EST) detected of at least 500 bases and 99% identity. (DOC 54 KB)
12042_2008_9021_MOESM5_ESM.doc (66 kb)
Supplementary Table 5Predicted peroxidases (Peroxidase Superfamily) genes in the papaya genome, the whole genome shotgun sequence accession number in NCBI (WGS Accession), coding sequence for amino acids (CDS), amino acids (aa), similarity in peptide sequence with another species (homology), extent the sequences were invariant (identity), E-value was the expectation value for homology, and the number of papaya expressed sequence tags (EST) detected of at least 500 bases and 99% identity. (DOC 66.5 KB)

References

  1. 1.
    Adams-Phillips L, Barry C, Kannan P, Lecercq J, Bouzayen M, Giovannoni JJ (2004) Ctr1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol Biol 54:387–404, doi:10.1023/B:PLAN.0000036371.30528.26 PubMedCrossRefGoogle Scholar
  2. 2.
    Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analysis reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965, doi:10.1105/tpc.105.036053 PubMedCrossRefGoogle Scholar
  3. 3.
    Alferez F, Zacarias L (1999) Interaction between ethylene and abscisic acid in the regulation of citrus fruit maturation. In: Kanellis AK, Chang C, Klee H, Blecker AB, Pech JC, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene. II. Kluwer Academic Publishers, Amsterdam, pp 183–184Google Scholar
  4. 4.
    Almora K, Pino JA, Hernandez M, Duarte C, Gonzalez J, Roncal E (2004) Evaluation of volatiles from ripening papaya (Carica papaya L., var. Maradol roja). Food Chem 86:127–130, doi:10.1016/j.foodchem.2003.09.039 CrossRefGoogle Scholar
  5. 5.
    Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515, doi:10.1126/science.1104812 PubMedCrossRefGoogle Scholar
  6. 6.
    Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997, doi:10.1073/pnas.0438070100 PubMedCrossRefGoogle Scholar
  7. 7.
    Andersson-Gunneras S, Hellgren JM, Bjorklund S, Regan S, Moritz T, Sundberg B (2003) Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–349, doi:10.1046/j.1365-313X.2003.01727.x PubMedCrossRefGoogle Scholar
  8. 8.
    APG (Angiosperm Phylogeny Group) (1998) An ordinal classification for the families of flowering plants. Ann Miss Bot Gard 85:531–553, doi:10.2307/2992015 CrossRefGoogle Scholar
  9. 9.
    APG (Angiosperm Phylogeny Group) II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linnean Soc 141:399–436. Updated Stevens PF (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 http://www.mobot.org/MOBOT/research/APweb/ Google Scholar
  10. 10.
    Armstrong GA, Hearst JE (1996) Carotenoids 2: genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J 10:228–237PubMedGoogle Scholar
  11. 11.
    Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218, doi:10.1007/BF02672069 CrossRefGoogle Scholar
  12. 12.
    Asha VA, Sane AP, Sane PN (2007) Multiple forms of α-expansin genes are expressed during banana fruit ripening and development. Postharvest Biol Technol 45:184–192, doi:10.1016/j.postharvbio.2007.03.003 CrossRefGoogle Scholar
  13. 13.
    Aubourg S, Lecharny A, Bohlmann J (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267:730–745, doi:10.1007/s00438-002-0709-y PubMedCrossRefGoogle Scholar
  14. 14.
    Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006a) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45:982–993, doi:10.1111/j.1365-313X.2006.02666.x PubMedCrossRefGoogle Scholar
  15. 15.
    Auldridge M, McCarty DR, Klee HJ (2006b) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321, doi:10.1016/j.pbi.2006.03.005 PubMedCrossRefGoogle Scholar
  16. 16.
    Azarkan M, Dibiani R, Baulard C, Baeyens-Volant D (2006) Effects of mechanical wounding on Carica papaya cysteine endopeptidases accumulation and activity. Int J Biol Macromol 38:216–224, doi:10.1016/j.ijbiomac.2006.02.021 PubMedCrossRefGoogle Scholar
  17. 17.
    Azarkan M, Dibiani R, Goormaghtigh E, Raussens V, Baeyens-Volant D (2006) The papaya Kunitz-type trypsin inhibitor is a highly stable β-sheet glycoprotein. Biochim Biophy Acta - Proteins & Proteomics 1764:1063–1072CrossRefGoogle Scholar
  18. 18.
    Azarkan M, El Moussaoui A, van Wuytswinkel D, Dehon G, Looze Y (2003) Fractionation and purification of the enzymes stored in the latex of Carica papaya. J Chromat B 790:229–238, doi:10.1016/S1570-0232(03)00084-9 CrossRefGoogle Scholar
  19. 19.
    Badillo VM (1993) Caricaceae segundo esquema. Alcance 43. Universidad Central de Venezuela, Facultad de Agronoma. p111Google Scholar
  20. 20.
    Badillo VM (2000) Carica L. vs. Vasconcella St. Hil. (Caricaceae): con la rehabilitación de este último. Ernstia 10:74–79Google Scholar
  21. 21.
    Baines BS, Brocklehurst K (1982) Characterization of papaya peptidase A as a cysteine proteinase of Carica papaya L. with active center properties that differ from those of papain by using 2,2′-dipyridyl disulfide and 4-chloro-7-nitrobenzofurazan as reactivity probes. Biochem J 205:205–211PubMedGoogle Scholar
  22. 22.
    Baldwin EA, Scott JW, Shewmaker CK, Schuch W (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. HortScience 35:1013–1022Google Scholar
  23. 23.
    Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986, doi:10.1104/pp.123.3.979 PubMedCrossRefGoogle Scholar
  24. 24.
    Bartley GE, Ishida BK (2003) Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis. BMC Plant Biology 3, 4 (http://www.biomedcentral.com/ 1471-2229/3/4)
  25. 25.
    Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409, doi:10.1093/jxb/erh047 PubMedCrossRefGoogle Scholar
  26. 26.
    Bennett RN, Kiddle G, Wallsgrove RM (1997) Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya. Phytochemistry 45:59–66, doi:10.1016/S0031-9422(96)00787-X CrossRefGoogle Scholar
  27. 27.
    Biale JB (1964) Growth, maturation, and senescence in fruits. Science 146:880–888, doi:10.1126/science.146.3646.880 PubMedCrossRefGoogle Scholar
  28. 28.
    Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509–523, doi:10.1105/tpc.106.048140 PubMedCrossRefGoogle Scholar
  29. 29.
    Bocock PN, Morse AM, Dervinis C, Davis JM (2008) Evolution and diversity of invertase genes in Populus trichocarpa. Planta 227:565–576, doi:10.1007/s00425-007-0639-3 PubMedCrossRefGoogle Scholar
  30. 30.
    Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133, doi:10.1073/pnas.95.8.4126 PubMedCrossRefGoogle Scholar
  31. 31.
    Booker J, Auldridge ME, Wills S, McCarty DR, Klee HJ, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1–20, doi:10.1016/j.cub.2004.06.061 CrossRefGoogle Scholar
  32. 32.
    Bowers JE, Chapman AB, Rong J, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438, doi:10.1038/nature01521 PubMedCrossRefGoogle Scholar
  33. 33.
    Bramley P, Teulieres C, Blain I, Bird C, Schuch W (1992) Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J 2:343–349, doi:10.1111/j.1365-313X.1992.00343.x CrossRefGoogle Scholar
  34. 34.
    Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216PubMedCrossRefGoogle Scholar
  35. 35.
    Bruinsma J, Paull RE (1984) Respiration during postharvest development of soursop fruit. Annona muricata L. Plant Physiol 76:131–138PubMedCrossRefGoogle Scholar
  36. 36.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187, doi:10.1016/0092-8674(91)90418-X PubMedCrossRefGoogle Scholar
  37. 37.
    Burdock GA (2002) Fenaroli’s handbook of flavor ingredients, 4th edn. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Burg SP, Burg EA (1965) Relationship between ethylene production and ripening in bananas. Bot Gaz 126:200–204, doi:10.1086/336320 CrossRefGoogle Scholar
  39. 39.
    Büttner M (2007) The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett 581:2318–2324, doi:10.1016/j.febslet.2007.03.016 PubMedCrossRefGoogle Scholar
  40. 40.
    Cano MP, De Ancos B, Lobo G (1995) Peroxidase and polyphenoloxidase activities in papaya during postharvest ripening and after freezing-thawing. J Fd Sci 60:815–820, doi:10.1111/j.1365-2621.1995.tb06236.x CrossRefGoogle Scholar
  41. 41.
    Cano MP, Lobo MG, De Ancos B, Galeazzi MAM (1996) Polyphenol oxidase from Spanish hermaphrodite and female papaya fruits (Carica papaya Cv. Sunrise, Solo Group). J Agric Food Chem 44:3075–3079, doi:10.1021/jf960119k CrossRefGoogle Scholar
  42. 42.
    Caspari T, Will A, Opekarova M, Sauer N, Tanner W (1994) Hexose/H + symporters in lower and higher plants. J Exp Biol 196:483–491PubMedGoogle Scholar
  43. 43.
    Chan HT (1979) Sugar composition of papaya during development. HortScience 14:140–141Google Scholar
  44. 44.
    Chan HT Jr, Flath RA, Forrey RR, Cavaletto CG, Nakayama TOM, Brekke JE (1973) Development of off-odors and off-flavors in papaya puree. J Agric Food Chem 21:566–570, doi:10.1021/jf60188a018 CrossRefGoogle Scholar
  45. 45.
    Chan YK, Paull RE (2007) Papaya Carica papaya L., Caricaceae. In: Janick J, Paull RE (eds) Encyclopedia of Fruit and Nuts. CABI, Wallingford, United Kingdom, pp 237–247Google Scholar
  46. 46.
    Chen NM, Paull RE (1985) Development and prevention of chilling injury in papaya fruit. J Am Soc Hortic Sci 111:639–643Google Scholar
  47. 47.
    Chen NJ, Paull RE (2003) Endoxylanase expressed during papaya fruit ripening: purification, cloning and characterization. Funct Plant Biol 30:433–441, doi:10.1071/FP02208 CrossRefGoogle Scholar
  48. 48.
    Chevalier T, De Rigal D, Mbeguie-A-Mbeguie D, Gauillard F, Richard-Forget F, Fils-Lycaon BR (1999) Molecular cloning and characterization of apricot fruit polyphenol oxidase. Plant Physiol 119:1261–1269, doi:10.1104/pp.119.4.1261 PubMedCrossRefGoogle Scholar
  49. 49.
    Choi D, Cho DT, Lee Y (2006) Expansins: expanding importance in plant growth and development. Physiol Plant 126:511–518Google Scholar
  50. 50.
    Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786, doi:10.1111/j.1432-1033.1996.00779.x PubMedCrossRefGoogle Scholar
  51. 51.
    Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96, doi:10.1016/j.micron.2003.10.029 PubMedCrossRefGoogle Scholar
  52. 52.
    Cong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880, doi:10.1007/s11103-006-9062-6 PubMedCrossRefGoogle Scholar
  53. 53.
    Considine MJ, Daley DO, Whelan J (2001) The expression of alternative oxidase and uncoupling protein during fruit ripening in Mango. Plant Physiol 126:1619–1629, doi:10.1104/pp.126.4.1619 PubMedCrossRefGoogle Scholar
  54. 54.
    Considine MJ, Holtzapffel RC, Day DA, Whelan J, Millar AH (2002) Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol 129:949–953, doi:10.1104/pp.004150 PubMedCrossRefGoogle Scholar
  55. 55.
    Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. cloning and expression in response to wounding and herbivory. Plant Physiol 124:285–296, doi:10.1104/pp.124.1.285 PubMedCrossRefGoogle Scholar
  56. 56.
    Cosgrove DJ (2007) Expansin Home Page. http://www.bio.psu.edu/expansins/index.htm. Cited 22 March 2008
  57. 57.
    Croteau R, Lutchan TM, Lewis NG (2000) Natural Products (secondary metabolites). In: Biochemistry and Molecular Biology of Plants, Buchanan B, Gruissem W, Jones R (eds.) Rockville MD, Amer. Soc. Plant Physiol. pp1250–1318Google Scholar
  58. 58.
    Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583, doi:10.1146/annurev.arplant.49.1.557 PubMedCrossRefGoogle Scholar
  59. 59.
    D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340, doi:10.1016/j.pbi.2006.03.016 PubMedCrossRefGoogle Scholar
  60. 60.
    Devitt LC, Sawbridge T, Holton TA, Mitchelson K, Dietzgen RG (2006) Discovery of genes associated with fruit ripening in Carica papaya using expressed sequence tags. Plant Sci 170:356–363, doi:10.1016/j.plantsci.2005.09.003 CrossRefGoogle Scholar
  61. 61.
    Dibley SJ, Gear ML, Xiao Y, Rosche EG, Offler CE, McCurdy DW, Patrick JW (2005) Temporal and spatial expression of hexose transporters in developing tomato (Lycopersicon esculentum) fruit. Funct Plant Biol 32:777–785, doi:10.1071/FP04224 CrossRefGoogle Scholar
  62. 62.
    Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902, doi:10.1104/pp.104.049981 PubMedCrossRefGoogle Scholar
  63. 63.
    Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis B, Bohlmann J, Douglas CJ (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640, doi:10.1111/j.1365-313X.2005.02403.x PubMedCrossRefGoogle Scholar
  64. 64.
    Elhafez D, Murcha MW, Clifton R, Soole KL, Day DA, Whelan J (2006) Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression. Plant Cell Physiol 47:43–54, doi:10.1093/pcp/pci221 PubMedCrossRefGoogle Scholar
  65. 65.
    El Moussaoui A, Nijs M, Paul C, Wintjens R, Vincentelli J, Azarkan M, Looze Y (2001) Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol Life Sci 58:556–570, doi:10.1007/PL00000881 PubMedCrossRefGoogle Scholar
  66. 66.
    Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984PubMedCrossRefGoogle Scholar
  67. 67.
    Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016, doi:10.1006/jmbi.2000.3903 PubMedCrossRefGoogle Scholar
  68. 68.
    Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protocols 2:953–971, doi:10.1038/nprot.2007.131 CrossRefGoogle Scholar
  69. 69.
    Fellman JK, Miller TW, Mattison DS, Mattheis JP (2000) Factors that influence biosynthesis of volatile flavor compounds in apple fruits. HortScience 35:1026–1033Google Scholar
  70. 70.
    Flath RA, Forrey RR (1977) Volatile components of papaya (Carica papaya L., Solo variety). J Agric Food Chem 25:103–109, doi:10.1021/jf60209a051 CrossRefGoogle Scholar
  71. 71.
    Flath RA, Light DM, Jang EB, Mon TR, John JO (1990) Headspace examination of volatile emissions form ripening papaya (Carica papaya L., Solo variety). J Agric Food Chem 38:1060–1063, doi:10.1021/jf00094a032 CrossRefGoogle Scholar
  72. 72.
    Franco MRB, Rodriguez ADB (1993) Volatile components of two pawpaw cultivars. Arq Biol Tecnol 36:613–632Google Scholar
  73. 73.
    Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development. Plant Physiol 105:405–413PubMedGoogle Scholar
  74. 74.
    Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM (1999) Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol 40:687–698, doi:10.1023/A:1006256302570 PubMedCrossRefGoogle Scholar
  75. 75.
    Frary A, Nesbitt C, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88, doi:10.1126/science.289.5476.85 PubMedCrossRefGoogle Scholar
  76. 76.
    Frank HA, Brudvig GW (2004) Redox functions of carotenoids in photosynthesis. Biochem 43:8607–8615, doi:10.1021/bi0492096 CrossRefGoogle Scholar
  77. 77.
    Fridman M, Zamir D (2003) Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol 131:603–609, doi:10.1104/pp.014431 PubMedCrossRefGoogle Scholar
  78. 78.
    Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plant by conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373–378, doi:10.1073/pnas.011405198 PubMedCrossRefGoogle Scholar
  79. 79.
    Gear ML, McPhillips ML, Patrick JW, McCurdy DW (2000) Hexose transporters of tomato: molecular cloning, expression analysis and functional characterization. Plant Mol Biol 44:687–697, doi:10.1023/A:1026578506625 PubMedCrossRefGoogle Scholar
  80. 80.
    Geisler DA, Broselid C, Hederstedt L, Rasmusson AG (2007) Ca2 + -binding and Ca2 + -independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. J Biol Chem 282:28455–28464, doi:10.1074/jbc.M704674200 PubMedCrossRefGoogle Scholar
  81. 81.
    Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180, doi:10.1105/tpc.019158 PubMedCrossRefGoogle Scholar
  82. 82.
    Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194, doi:10.1038/nature07271 PubMedCrossRefGoogle Scholar
  83. 83.
    Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100, doi:10.1016/j.tplants.2005.12.006 PubMedCrossRefGoogle Scholar
  84. 84.
    Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908, doi:10.1111/j.1365-313X.2004.02261.x PubMedCrossRefGoogle Scholar
  85. 85.
    Guo AY, He K, Liu D, Bai SN, Gu XC, Wei LP, Luo JC (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569, doi:10.1093/bioinformatics/bti334 PubMedCrossRefGoogle Scholar
  86. 86.
    Gussman CD, Goffredz JC, Gianfagna TJ (1993) Ethylene production and fruit-softening rates in several apple fruit ripening variants. HortScience 28:135–137Google Scholar
  87. 87.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  88. 88.
    Hall BP, Shakeel SN, Schaller GE (2007) Ethylene receptors: Ethylene perception and signal transduction. J Plant Growth Regul 26:118–130, doi:10.1007/s00344-007-9000-0 CrossRefGoogle Scholar
  89. 89.
    Hamberger B, Ellis M, Friedmann M, de Azevedo Souza C, Barbazuk B, Douglas CJ (2007) Genome-wide analysis of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Ozyza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Can J Bot 85:1182–1201, doi:10.1139/B07–098 CrossRefGoogle Scholar
  90. 90.
    Henry MF, Nyns EJ (1975) Cyanide-insensitive respiration. An alternative mitochondrial pathway. Subcell Biochem 4:1–65PubMedGoogle Scholar
  91. 91.
    Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218, doi:10.1016/S1369-5266(00)00163-1 PubMedCrossRefGoogle Scholar
  92. 92.
    Hortensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77, doi:10.1146/annurev.arplant.57.032905.105212 PubMedCrossRefGoogle Scholar
  93. 93.
    Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271, doi:10.1016/S0092-8674(00)81425-7 PubMedCrossRefGoogle Scholar
  94. 94.
    Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332PubMedCrossRefGoogle Scholar
  95. 95.
    Jansen EF, Balls AK (1941) Chymopapain: a new crystalline proteinase from papaya latex. J Biol Chem 137:459–460Google Scholar
  96. 96.
    Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634, doi:10.1007/s00239-004-0242-1 PubMedCrossRefGoogle Scholar
  97. 97.
    Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield DM, Cooper AJL, Schloss JV, Pichersky E, Vainstein A, Dudareva N (2007) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281:23357–23366, doi:10.1074/jbc.M602708200 CrossRefGoogle Scholar
  98. 98.
    Katague DB, Kirch ER (1965) Chromatographic analysis of volatile components of papaya fruits. J Pharm Sci 54:891–894, doi:10.1002/jps.2600540616 PubMedCrossRefGoogle Scholar
  99. 99.
    Kevany B, Taylor M, Dal Cin V, Klee HJ (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458–467, doi:10.1111/j.1365-313X.2007.03170.x PubMedCrossRefGoogle Scholar
  100. 100.
    Klee H, Tieman D (2002) The tomato ethylene receptor gene family: form and function. Physiol Plant 115:336–341, doi:10.1034/j.1399-3054.2002.1150302.x PubMedCrossRefGoogle Scholar
  101. 101.
    Kliebenstein DJ, Kroymann J, Mitchell-Olds T (2005) The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr Opin Plant Biol 8:264–271, doi:10.1016/j.pbi.2005.03.002 PubMedCrossRefGoogle Scholar
  102. 102.
    Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53:61–71, doi:10.1093/jexbot/53.366.61 PubMedCrossRefGoogle Scholar
  103. 103.
    Ku HM, Doganlar S, Chen KY, Tanksley S (1999) The genetic basis of pear-shaped tomato fruit. TAG 9:844–850, doi:10.1007/s001220051304 Google Scholar
  104. 104.
    Ku HM, Grandillo G, Tanksley SD (2000a) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. TAG 101:873–878, doi:10.1007/s001220051555 CrossRefGoogle Scholar
  105. 105.
    Ku HM, Vision T, Liu JP, Tanksley SD (2000b) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126, doi:10.1073/pnas.160271297 PubMedCrossRefGoogle Scholar
  106. 106.
    Kunieda T, Amano T, Shioi Y (2005) Search for chlorophyll degradation enzyme, Mg-dechelatase, from extracts of Chenopodium album with native and artificial substrates. Plant Sci 169:177–183, doi:10.1016/j.plantsci.2005.03.010 CrossRefGoogle Scholar
  107. 107.
    Langenkamper G, Fung RWM, Newcomb RD, Atkinson RG, Gardner RC, MacRae EA (2002) Sucrose phosphate synthase genes in plants belong to three different families. J Mol Evol 54:322–332PubMedGoogle Scholar
  108. 108.
    Lelievre JM, Latche A, Jones B, Bouzayen M, Pech JC (1997) Ethylene and fruit ripening. Physiol Plant 101:727–739, doi:10.1111/j.1399-3054.1997.tb01057.x CrossRefGoogle Scholar
  109. 109.
    Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247, doi:10.1007/s00425-002-0750-4 PubMedCrossRefGoogle Scholar
  110. 110.
    Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128:854–864, doi:10.1104/pp.010658 PubMedCrossRefGoogle Scholar
  111. 111.
    Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65, doi:10.1146/annurev.arplant.50.1.47 PubMedCrossRefGoogle Scholar
  112. 112.
    Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: Enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789, doi:10.1042/BST0280785 PubMedCrossRefGoogle Scholar
  113. 113.
    Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422PubMedGoogle Scholar
  114. 114.
    Liu J, Eck JV, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306, doi:10.1073/pnas.162485999 PubMedCrossRefGoogle Scholar
  115. 115.
    López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874, doi:10.1111/j.1469-8137.2008.02406.x PubMedCrossRefGoogle Scholar
  116. 116.
    Lyons E, Pedersen B, Kane J, Freeling M (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the Rosids. Trop Plant Biol 1: (this issue)Google Scholar
  117. 117.
    Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98:771–776, doi:10.1073/pnas.021465298 PubMedCrossRefGoogle Scholar
  118. 118.
    Mackenzie S, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–586PubMedCrossRefGoogle Scholar
  119. 119.
    MacLeod AJ, Pieris NM (1983) Volatile components of papaya (Carica papaya L.) with particular reference to glucosinolate products. J Agric Food Chem 31:1005–1008, doi:10.1021/jf00119a021 CrossRefGoogle Scholar
  120. 120.
    Madden TL, Tatusov RL, Zhang J (1996) Application of network BLAST server. Methods Enzymol 266:131–141, doi:10.1016/S0076-6879(96)66011-X PubMedCrossRefGoogle Scholar
  121. 121.
    Manenoi A, Bayogan ERV, Thumdee S, Paull RE (2007) Utility of 1-methylcyclopropene as a papaya postharvest treatment. Postharvest Biol Technol 44:55–62, doi:10.1016/j.postharvbio.2006.11.005 CrossRefGoogle Scholar
  122. 122.
    Manenoi A, Paull RE (2007) Papaya fruit softening, endoxylanase gene expression, protein and activity. Physiol Plant 131:470–480, doi:10.1111/j.1399-3054.2007.00967.x PubMedCrossRefGoogle Scholar
  123. 123.
    Marchler-Bauer A et al (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:192–196, doi:10.1093/nar/gki069 CrossRefGoogle Scholar
  124. 124.
    Martin T, Frommer WB, Salanoubat M, Willmitzer L (1993) Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J 4:367–377, doi:10.1046/j.1365-313X.1993.04020367.x PubMedCrossRefGoogle Scholar
  125. 125.
    Marusek CM, Trobaugh NM, Flurkey WH, Inlow JK (2006) Comparative analysis of polyphenol oxidase from plant and fungal species. J Inorg Biochem 100:108–123, doi:10.1016/j.jinorgbio.2005.10.008 PubMedCrossRefGoogle Scholar
  126. 126.
    Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochem 60:551–565, doi:10.1016/S0031-9422(02)00171-1 CrossRefGoogle Scholar
  127. 127.
    McCaig BC, Meagher RB, Dean JFD (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636, doi:10.1007/s00425-004-1472-6 PubMedCrossRefGoogle Scholar
  128. 128.
    McDonald AE (2008) Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed ‘cyanide-resistant’ terminal oxidase. Funct Plant Biol 35:535–552, doi:10.1071/FP08025 CrossRefGoogle Scholar
  129. 129.
    McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4:1425–1433PubMedCrossRefGoogle Scholar
  130. 130.
    Melo AMP, Bandeiras TM, Teixeira M (2004) New Insights into Type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 68:603–616, doi:10.1128/MMBR.68.4.603-616.2004 PubMedCrossRefGoogle Scholar
  131. 131.
    Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S, Rasmusson AG (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol 133:642–652, doi:10.1104/pp.103.024208 PubMedCrossRefGoogle Scholar
  132. 132.
    Ming R et al (2008) Genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996, doi:10.1038/nature06856 PubMedCrossRefGoogle Scholar
  133. 133.
    Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481, doi:10.1016/S1360-1385(02)02366-X PubMedCrossRefGoogle Scholar
  134. 134.
    Morshidi M (1996) Genetic variability in Carica papaya and related species. Dissertation, University of Hawaii at ManoaGoogle Scholar
  135. 135.
    Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiol 140:411–432, doi:10.1104/pp.105.073783 PubMedCrossRefGoogle Scholar
  136. 136.
    Nakasone HY, Paull RE (1998) Tropical Fruits. CAB International, Wallingford, EnglandGoogle Scholar
  137. 137.
    Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, of 1-aminocyclopropane-1-carboxylase oxidase and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295–1305, doi:10.1104/pp.118.4.1295 PubMedCrossRefGoogle Scholar
  138. 138.
    Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Kim E, Jamieson R, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from Apple. Plant Physiol 141:147–166, doi:10.1104/pp.105.076208 PubMedCrossRefGoogle Scholar
  139. 139.
    Noordermeer MA, Veldink GA, Vliegenthart JFG (1999) Alfalfa contains substantial hydroperoxide lyase activity and a 3Z:2E-enal isomerase. FEBS Lett 443:201–204, doi:10.1016/S0014-5793(98)01706-2 PubMedCrossRefGoogle Scholar
  140. 140.
    Oberg KA, Ruysschaert JM, Azarkan M, Smolders N, Zerhouni S, Wintjens R, Amrani A, Looze Y (1998) Papaya glutamine cyclase, a plant enzyme highly resistant to proteolysis, adopts an all-b conformation. Eur J Biochem 258:214–222, doi:10.1046/j.1432-1327.1998.2580214.x PubMedCrossRefGoogle Scholar
  141. 141.
    Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282–1288, doi:10.1093/emboj/cdg131 PubMedCrossRefGoogle Scholar
  142. 142.
    Paquette SM, Bak S, Feyereisen R (2000) Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol 19:307–317, doi:10.1089/10445490050021221 PubMedCrossRefGoogle Scholar
  143. 143.
    Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochem 65:1879–1893, doi:10.1016/j.phytochem.2004.06.023 CrossRefGoogle Scholar
  144. 144.
    Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol 48:191–222, doi:10.1146/annurev.arplant.48.1.191 PubMedCrossRefGoogle Scholar
  145. 145.
    Paull RE (1993) Pineapple and Papaya. In: Seymour G, Taylor J, Tucker G (eds) Biochemistry of Fruit Ripening. Chapman & Hall, London, United Kingdom, pp 291–323Google Scholar
  146. 146.
    Paull RE, Chen NJ (1983) Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant Physiol 72:382–385PubMedCrossRefGoogle Scholar
  147. 147.
    Paull RE, Chen NJ (1989) Waxing and plastic wraps influence water loss from papaya fruit during storage and ripening. J Am Soc Hortic Sci 114:937–942Google Scholar
  148. 148.
    Phillips DR, Rasbery JM, Bartel B, Matsuda SPT (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314, doi:10.1016/j.pbi.2006.03.004 PubMedCrossRefGoogle Scholar
  149. 149.
    Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243, doi:10.1016/S1369-5266(02)00251-0 PubMedCrossRefGoogle Scholar
  150. 150.
    Picton S, Gray J, Barton S, AbuBakar U, Lowe A, Grierson D (1993) cDNA cloning and characterisation of nove1 ripening-related mRNAs with altered patterns of accumulation in the ripening inhibitor (rin) tomato ripening mutant. Plant Mol Biol 23:193–207, doi:10.1007/BF00021431 PubMedCrossRefGoogle Scholar
  151. 151.
    Pino JA, Almora K, Marbot R (2003) Volatile components of papaya (Carica papaya L., Maradol variety) fruit. Flavour Fragrance J 18:492–496, doi:10.1002/ffj.1248 CrossRefGoogle Scholar
  152. 152.
    Piotrowski M, Schemenewitz A, Lopukhina A, Müller A, Janowitz T, Weiler EW, Oecking C (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717–50725, doi:10.1074/jbc.M407681200 PubMedCrossRefGoogle Scholar
  153. 153.
    Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2006) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36, doi:10.1016/j.tplants.2006.11.006 PubMedCrossRefGoogle Scholar
  154. 154.
    Pruzinska A, Anders I, Aubry S, Schenk A, Tapernoux-Luthe E, Muller T, Krautler B, Hortensteiner S (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387, doi:10.1105/tpc.106.044404 PubMedCrossRefGoogle Scholar
  155. 155.
    Qiu YX, Nishina MS, Paull RE (1995) Papaya fruit growth, calcium uptake and fruit ripening. J Am Soc Hortic Sci 120:246–253Google Scholar
  156. 156.
    Raes J, Rohde A, Chrisrensen JH, Van der Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071, doi:10.1104/pp.103.026484 PubMedCrossRefGoogle Scholar
  157. 157.
    Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113, doi:10.1023/A:1006380021658 PubMedCrossRefGoogle Scholar
  158. 158.
    Rasmusson AG, Svensson AS, Knoop V, Grohmann L, Brennicke A (1999) Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes are present in potato mitochondria. Plant J 20:79–87, doi:10.1046/j.1365-313X.1999.00576.x PubMedCrossRefGoogle Scholar
  159. 159.
    Roberts TH, Fredlund KM, Moller IM (1995) Direct evidence for the presence of two external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria. FEBS Lett 373:307–309, doi:10.1016/0014-5793(95)01059-N PubMedCrossRefGoogle Scholar
  160. 160.
    Rodman JE, Karol KG, Price RA, Sytsma KJ (1996) Molecules, morphology, and Dahlgren’s expanded order Capparales. Syst Bot 21:289–307, doi:10.2307/2419660 CrossRefGoogle Scholar
  161. 161.
    Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG (1998) Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85:997–1006, doi:10.2307/2446366 CrossRefGoogle Scholar
  162. 162.
    Rodrigo MJ, Marcos JF, Alférez F, Mallent MD, Zacarías L (2003) Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot 54:727–738, doi:10.1093/jxb/erg083 PubMedCrossRefGoogle Scholar
  163. 163.
    Rodrigo MJ, Alquezar B, Zacarias L (2006) Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot 57:633–643, doi:10.1093/jxb/erj048 PubMedCrossRefGoogle Scholar
  164. 164.
    Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998, doi:10.1126/science.283.5404.996 PubMedCrossRefGoogle Scholar
  165. 165.
    Ronse de Craene LP, Haston E (2006) The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot J Linn Soc 151:453–494, doi:10.1111/j.1095-8339.2006.00580.x CrossRefGoogle Scholar
  166. 166.
    Ronse de Craene LP, Smets EF (1999) The floral development and anatomy of Carica papaya (Caricaceae). Can J Bot 77:582–298, doi:10.1139/cjb-77-4-582 CrossRefGoogle Scholar
  167. 167.
    Rose JKC, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening regulated. Proc Natl Acad Sci USA 94:5955–5960, doi:10.1073/pnas.94.11.5955 PubMedCrossRefGoogle Scholar
  168. 168.
    Rose JKC, Cosgrove DJ, Albersheim P, Darvill AG, Bennett AB (2000) Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol 123:1583–1592, doi:10.1104/pp.123.4.1583 PubMedCrossRefGoogle Scholar
  169. 169.
    Rossetto MRM, Oliveira do Nascimento JR, Purgatto E, Fabi JP, Lajolo FM, Cordenunsi BR (2008) Benzylglucosinolate, benzylisothiocyanate, and myrosinase activity in papaya fruit during development and ripening. J Agric Food Chem 56:9592–9599, doi:10.1021/jf801934x PubMedCrossRefGoogle Scholar
  170. 170.
    Roth I, Clausnitzer I (1972) Desarrollo y anatomía del fruto y la semilla de Carica papaya L. (Lechosa). Acta Bot Venez 7:187–206Google Scholar
  171. 171.
    Saito N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  172. 172.
    Salas CE, Gomes MTR, Hernandez M, Lopes MTP (2008) Plant cysteine proteinases: Evaluation of the pharmacological activity. Phytochem 69:2263–2269, doi:10.1016/j.phytochem.2008.05.016 CrossRefGoogle Scholar
  173. 173.
    Sampedro J, Lee Y, Carey RE, de Pamphilis C, Cosgrove DJ (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J 44:409–419, doi:10.1111/j.1365-313X.2005.02540.x PubMedCrossRefGoogle Scholar
  174. 174.
    Sampedro J, Carey RE, Cosgrove DJ (2006) Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. J Plant Res 119:11–21, doi:10.1007/s10265-005-0253-z PubMedCrossRefGoogle Scholar
  175. 175.
    Sangwanangkul P, Paull RE (2005) The role of hexose transporter in sugar accumulation of papaya fruit during maturation and ripening. Acta Hortic 740:313–316Google Scholar
  176. 176.
    Schaller GE, Kieber JJ (2002) Ethylene. In: Somerville C, Meyerowitz E (eds) The Arabidopsis Book. Rockville, MD: American Society of Plant BiologistsGoogle Scholar
  177. 177.
    Schledz M, al-Babili S, von Lintig J, Haubruck H, Rabbani S, Kleinig H, Beyer P (1996) Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering. Plant J 10:781–792, doi:10.1046/j.1365-313X.1996.10050781.x PubMedCrossRefGoogle Scholar
  178. 178.
    Schonbaum GR, Bonner WD Jr, Storey BT, Bahr JT (1971) Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol 47:124–128PubMedCrossRefGoogle Scholar
  179. 179.
    Schreier P, Lehr M, Heidlas J, Idstein H (1985) Volatiles from papaya (Carica papaya L.) fruit: indication of precursors of terpene compounds. A Lebensm - Unters Forsch 180:297–302CrossRefGoogle Scholar
  180. 180.
    Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54:712–732, doi:10.1111/j.1365-313X.2008.03446.x PubMedCrossRefGoogle Scholar
  181. 181.
    Silva E, Lourenço EJ, Neves VA (1990) Soluble and bound peroxidase from papaya fruit. Phytochem 29:1051–1056, doi:10.1016/0031-9422(90)85401-Z CrossRefGoogle Scholar
  182. 182.
    Shindo T, Van Der Hoorn RAL (2008) Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol Plant Pathol 9:119–125PubMedGoogle Scholar
  183. 183.
    Simkin A, Schwartz S, Auldridge M, Taylor M, Klee HJ (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles B-ionone, pseudoionone and geranylacetone. Plant J 40:882–892, doi:10.1111/j.1365-313X.2004.02263.x PubMedCrossRefGoogle Scholar
  184. 184.
    Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590, doi:10.1002/pmic.200300776 PubMedCrossRefGoogle Scholar
  185. 185.
    Speirs J, Lee E, Holt K, Yong-Duk K, Scott NS, Loveys B, Schuch W (1998) Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiol 117:1047–1058, doi:10.1104/pp.117.3.1047 PubMedCrossRefGoogle Scholar
  186. 186.
    Stepanova AN, Alonso JM (2005) Ethylene Signaling Pathway. Sci STKE 276:cm3, doi:10.1126/stke.2762005cm3
  187. 187.
    Storey WB (1969) Papaya (Carica papaya L.). In: Ferwerda P, Wit F (eds) Outline of perennial crop breeding in the tropics. H. Veenman & Zonen, Wageningen, pp 389–407Google Scholar
  188. 188.
    Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–8, doi:10.1104/pp.121.1.1 PubMedCrossRefGoogle Scholar
  189. 189.
    Sturm A, Tang G-Q (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407, doi:10.1016/S1360-1385(99)01470-3 PubMedCrossRefGoogle Scholar
  190. 190.
    Takita MA, Berger IJ, Basílio-Palmieri AC, Borges KM, De Souza JM, Targon MLNP (2007) Terpene production in the peel of sweet orange fruits. Genet Mol Biol 30:841–847, doi:10.1590/S1415-47572007000500012 CrossRefGoogle Scholar
  191. 191.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599, doi:10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  192. 192.
    Tan SC, Lam PF (1985) Effect of gamma irradiation on PAL activity and phenolic compounds in papaya (Carica papaya L.) and mango (Mangifera inidca L.) fruits. ASEAN Food J. 1:134–136Google Scholar
  193. 193.
    Tang CS (1970) Benzyl isothiocyanate of papaya fruit. Phytochem 10:117–121, doi:10.1016/S0031-9422(00)90258-9 CrossRefGoogle Scholar
  194. 194.
    Taylor MAJ, Al-sheikh M, Revell DF, Sumner IG, Connerton IF (1999) cDNA cloning and expression of Carica papaya prochymopapain isoforms in Escherichia coli. Plant Sci 145:41–47, doi:10.1016/S0168-9452(99)00068-0 CrossRefGoogle Scholar
  195. 195.
    Theologis A, Laties GG (1978) Respiratory contribution of the alternate path during various stages of ripening in avocado and banana fruits. Plant Physiol 62:249–255PubMedCrossRefGoogle Scholar
  196. 196.
    Thipyapong P, Joel DM, Steffens JC (1997) Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol 113:707–718PubMedGoogle Scholar
  197. 197.
    Thipyapong P, Hunt MD, Steffens JC (2004) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220:105–117, doi:10.1007/s00425-004-1330-6 PubMedCrossRefGoogle Scholar
  198. 198.
    Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304, doi:10.1016/j.pbi.2006.03.014 PubMedCrossRefGoogle Scholar
  199. 199.
    Tieman DM, Loucas HM, Kim JY, Clark DG, Klee HJ (2007) Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochem 68:2660–2669, doi:10.1016/j.phytochem.2007.06.005 CrossRefGoogle Scholar
  200. 200.
    Tompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680, doi:10.1093/nar/22.22.4673 CrossRefGoogle Scholar
  201. 201.
    Trentmann SM, Kende H (1995) Analysis of Arabidopsis cDNA that shows homology to the tomato E8 cDNA. Plant Mol Biol 29:161–166, doi:10.1007/BF00019127 PubMedCrossRefGoogle Scholar
  202. 202.
    Tsuchisaka A, Yamagami T, Alonso JM, Ecker JR, Theologis A (2007) The Arabidopsis 1-Aminocyclopropane-1-Carboxylic Acid Synthase (ACS) Gene Family. Conference Proc, 18th Internatl Conference on Arabidopsis Research, 2007. TAIR Publication:501722104Google Scholar
  203. 203.
    Tymowska-Lalanne Z, Kreis M (1998) Expression of the Arabidopsis thaliana invertase gene family. Planta 207:259–265, doi:10.1007/s004250050481 PubMedCrossRefGoogle Scholar
  204. 204.
    Valerio L, De Meyer M, Penel C, Dunand C (2004) Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochem 65:1331–1342, doi:10.1016/j.phytochem.2004.04.017 CrossRefGoogle Scholar
  205. 205.
    Van Droogenbroeck B, Breyne P, Goetghebeur P, Romeijn-Peeters E, Kyndt T, Gheysen G (2002) AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. TAG 105:289–297, doi:10.1007/s00122-002-0983-4 PubMedCrossRefGoogle Scholar
  206. 206.
    Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: From gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734, doi:10.1146/annurev.arplant.48.1.703 PubMedCrossRefGoogle Scholar
  207. 207.
    Vogel JT, Tan B-C, McCarty DR, Klee HJ (2008) The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem 283:11364–11373, doi:10.1074/jbc.M710106200 PubMedCrossRefGoogle Scholar
  208. 208.
    Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357, doi:10.1073/pnas.0237085100 PubMedCrossRefGoogle Scholar
  209. 209.
    Wang Y, Tang XM, Cheng ZK, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: Comparative composition in the tomato genome. Genetics 172:2529–2540, doi:10.1534/genetics.106.055772 PubMedCrossRefGoogle Scholar
  210. 210.
    Watling JR, Robinson SA, Seymour RS (2006) Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiol 140:1367–1373, doi:10.1104/pp.105.075523 PubMedCrossRefGoogle Scholar
  211. 211.
    Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270, doi:10.1016/S1360-1385(02)02273-2 PubMedCrossRefGoogle Scholar
  212. 212.
    Wu G-L, Zhang X-Y, Zhang L-Y, Pan Q-H, Shen Y-Y, Zhang D-P (2004) Phloem unloading in developing walnut fruit is symplasmic in the seed pericarp and apoplasmic in the fleshy pericarp. Plant Cell Physiol 45:1461–1470, doi:10.1093/pcp/pch169 PubMedCrossRefGoogle Scholar
  213. 213.
    Wüthrich KL, Bovet L, Hunziker PE, Donnison IS, Hörtensteiner S (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21:189–198, doi:10.1046/j.1365-313x.2000.00667.x PubMedCrossRefGoogle Scholar
  214. 214.
    Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530, doi:10.1126/science.1153040 PubMedCrossRefGoogle Scholar
  215. 215.
    Xue J, Jørgensen M, Pihlgren U, Rask L (1995) The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol Biol 27:911–922, doi:10.1007/BF00037019 PubMedCrossRefGoogle Scholar
  216. 216.
    Yabumoto K, Yamaguchi M, Jennings WG (1977) Biosynthesis of some volatiles constituents of `muskmelon Cucumis melo. Chemische Mikrobiologische Technologische Lebensraum 5:53–56Google Scholar
  217. 217.
    Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112, doi:10.1074/jbc.M308297200 PubMedCrossRefGoogle Scholar
  218. 218.
    Yamamoto HY (1964) Comparison of the carotenoids in yellow- and red-fleshed Carica papaya. Nature 201:1049–1050, doi:10.1038/2011049a0 PubMedCrossRefGoogle Scholar
  219. 219.
    Yip WK, Dong JG, Kenny JW, Thompson GA, Yang SF (1990) Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci USA 87:7930–7934, doi:10.1073/pnas.87.20.7930 PubMedCrossRefGoogle Scholar
  220. 220.
    Yoo A, Seo YS, Jung JW, Sung SK, Kim WT, Lee W, Yang DR (2006) Lys296 and Arg299 residues in the C-terminus of MD-ACO1 are essential for a 1-aminocyclopropane-1-carboxylate oxidase enzyme activity. J Struct Biol 156:407–420, doi:10.1016/j.jsb.2006.08.012 PubMedCrossRefGoogle Scholar
  221. 221.
    Zeevart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mo1 Biol 39:439–473CrossRefGoogle Scholar
  222. 222.
    Zhang L-Y, Peng Y-B, Pelleschi-Travier S, Fan Y, Lu Y-F, Lu Y-M, Gao X-P, Shen Y-Y, Delrot S, Zhang D-P (2004) Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol 135:574–586, doi:10.1104/pp.103.036632 PubMedCrossRefGoogle Scholar
  223. 223.
    Zhang X-Y, Wang X-L, Wang X-F, Xia G-H, Pan Q-H, Fan R-C, Wu F-Q, Yu X-C, Zhang D-P (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220–232, doi:10.1104/pp.106.081430 PubMedCrossRefGoogle Scholar
  224. 224.
    Zhou LL, Paull RE (2001) Sucrose metabolism during papaya (Carica papaya) fruit growth and ripening. J Am Soc Hortic Sci 126:351–357Google Scholar
  225. 225.
    Zhou L, Chen CC, Ming R, Christopher DA, Paull RE (2003) Apoplastic invertase and its enhanced expression and post-translational control during papaya fruit maturation and ripening. J Am Soc Hortic Sci 128:628–635Google Scholar
  226. 226.
    Zimmerman DC, Vick BA, Borg TK (1974) Intracellular distribution of hydroperoxide isomerase. Plant Physiol 53:1–4PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Robert E. Paull
    • 1
  • Beth Irikura
    • 1
  • Pingfang Wu
    • 1
  • Helen Turano
    • 1
  • Nancy Jung Chen
    • 1
  • Andrea Blas
    • 2
  • John K. Fellman
    • 3
  • Andrea R. Gschwend
    • 4
  • Ching Man Wai
    • 1
  • Qingyi Yu
    • 5
  • Gernot Presting
    • 2
  • Maqsudul Alam
    • 6
  • Ray Ming
    • 4
  1. 1.Department of Tropical Plant and Soil SciencesUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Department of Molecular Biosciences and BioengineeringUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.Department of Horticulture and Landscape ArchitectureWashington State UniversityPullmanUSA
  4. 4.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Hawaii Agriculture Research CenterAieaUSA
  6. 6.Advanced Studies in Genomics, Proteomics and BioinformaticsUniversity of HawaiiHonoluluUSA

Personalised recommendations