Skip to main content

Advertisement

Log in

Computational Approaches and Tools Used in Identification of Dispersed Repetitive DNA Sequences

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

It has become clear that dispersed repeat sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, inducing changes in gene expression, and facilitating generation of novel genes. Growing recognition of the importance of dispersed repeats has fueled development of computational tools designed to expedite discovery and classification of repeats. Here we review major existing repeat exploration tools and discuss the algorithms utilized by these tools. Special attention is devoted to ab initio programs, i.e., those tools that do not rely upon previously identified repeats to find new repeat elements. We conclude by discussing the strengths and weaknesses of current tools and highlighting additional approaches that may advance repeat discovery/characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Haas and Salzberg [33] have recently reviewed a subset of the repeat finders that we discuss. The focus of much of their review is mechanisms for handling the complications presented by repeats during genome assembly. The focus of our review is the use of these tools for identification of novel dispersed repeats in genomes.

  2. BLAST is an acronym for the “Basic Local Alignment and Search Tool” developed by Altschul et al. [3]. There are currently several different BLAST modules specially designed for comparisons between different data types (see http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). WU-BLAST is a powerful alternative implementation of BLAST available from Washington University (http://blast.wustl.edu/). Crossmatch is a similarity search tool traditionally packaged with Phrap (www.phrap.org).

Abbreviations

BLAST:

Basic Local Alignment and Search Tool

bp:

base pair

Mb:

megabase

Gb:

gigabase

MITE:

miniature inverted-repeat transposable element

PALS:

Pairwise Alignment of Long Sequences

SSR:

simple sequence repeat

References

  1. Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with enhanced suffix arrays. J Discrete Algorithm 2:53–86

    Article  Google Scholar 

  2. Agarwal P, States DJ (1994) The Repeat Pattern Toolkit (RPT): analyzing the structure and evolution of the C. elegans genome. Proc Int Conf Intell Syst Mol Biol 2:1–9

    PubMed  CAS  Google Scholar 

  3. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  4. Altschul SF, Madden TL, Zhang J et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  5. Andrieu O, Fiston AS, Anxolabehere D et al (2004) Detection of transposable elements by their compositional bias. BMC Bioinformatics 5:94

    Article  PubMed  CAS  Google Scholar 

  6. Assaad FF, Tucker KL, Signer ER (1993) Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol 22:1067–1085

    Article  PubMed  CAS  Google Scholar 

  7. Bao Z, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12:1269–1276

    Article  PubMed  CAS  Google Scholar 

  8. Batzer MA, Deininger PL (2002) ALU repeats and human genomic diversity. Nature 3:370–380

    CAS  Google Scholar 

  9. Bennett MD, Leitch IJ (2004) Plant DNA C-values database (release 3.0, Jan. 2004). http://www.rbgkew.org.uk/cval/homepage.html

  10. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  11. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed  CAS  Google Scholar 

  12. Biemont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  13. Britten RJ (1996) Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol Phylogenet Evol 5:13–17

    Article  PubMed  CAS  Google Scholar 

  14. Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    Article  PubMed  CAS  Google Scholar 

  15. Brosius J (2003) How significant is 98.5% ‘junk’ in mammalian genomes. Bioinformatics 19(suppl. 2):ii35

    Google Scholar 

  16. Campagna D, Romualdi C, Vitulo N et al (2005) RAP: a new computer program for de novo identification of repeated sequences in whole genomes. Bioinformatics 21:582–588

    Article  PubMed  CAS  Google Scholar 

  17. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  18. Chenna R, Sugawara H, Koike T et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  19. Chouvarine P, Saha S, Peterson DG (2008) An automated, high-throughput sequence read classification pipeline for preliminary genome characterization. Anal Biochem 373:78–87

    Article  PubMed  CAS  Google Scholar 

  20. Cormen TH, Leiserson CE, Rivest RL et al (2001) Introduction to Algorithms, 2nd Edition. MIT Press and McGraw-Hill, Cambridge, MA

    Google Scholar 

  21. Coward E, Drablos F (1998) Detecting periodic patterns in biological sequences. Bioinformatics 14:498–507

    Article  PubMed  CAS  Google Scholar 

  22. de Bruijn NG (1946) A combinatorial problem. Proc Koninklijke Nederlandse Akademie v Wetenschappen 49:758–764

    Google Scholar 

  23. Delcher AL, Kasif S, Fleischmann RD et al (1999) Alignment of whole genomes. Nucleic Acids Res 27:2369–2376

    Article  PubMed  CAS  Google Scholar 

  24. Delcher AL, Phillippy A, Carlton J et al (2002) Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30:2478–2483

    Article  PubMed  Google Scholar 

  25. Dorer DR, Henikoff S (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77:993–1002

    Article  PubMed  CAS  Google Scholar 

  26. Du L, Zhou H, Yan H (2007) OMWSA: detection of DNA repeats using moving window spectral analysis. Bioinformatics 23:631–633

    Article  PubMed  CAS  Google Scholar 

  27. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  28. Edgar RC (2007) PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8:18

    Article  PubMed  CAS  Google Scholar 

  29. Edgar RC, Myers EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21(Suppl 1):i152–i158

    Article  PubMed  CAS  Google Scholar 

  30. Feschotte C, Wessler SR (2001) Treasures in the attic: rolling circle transposons discovered in eukaryotic genomes. Proc Natl Acad Sci USA 98:8923–8924

    Article  PubMed  CAS  Google Scholar 

  31. Frost LS, Leplae R, Summers AO et al (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  PubMed  CAS  Google Scholar 

  32. Gusfield D (1999) Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York

    Google Scholar 

  33. Haas BJ, Salzberg SL (2007) Finding repeats in genome sequences. In: Lengauer T (ed) Bioinformatics—From Genomes to Therapies, 1 edn. Wiley-VCH, Weinheim, pp 197–234

    Google Scholar 

  34. Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225

    Article  PubMed  Google Scholar 

  35. Hou M, Berman P, Hsu CH et al (2007) HomologMiner: looking for homologous genomic groups in whole genomes. Bioinformatics 23:917–925

    Article  PubMed  CAS  Google Scholar 

  36. Ilie L, Ilie S (2007) Multiple spaced seeds for homology search. Bioinformatics 23:2969–2977

    Article  PubMed  CAS  Google Scholar 

  37. Jiang N, Bao Z, Zhang X et al (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  38. Jiang N, Bao Z, Zhang X et al (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  PubMed  CAS  Google Scholar 

  39. Jurka J, Kapitonov VV, Pavlicek A et al (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  PubMed  CAS  Google Scholar 

  40. Jurka J, Klonowski P, Dagman V et al (1996) CENSOR—a program for identification and elimination of repetitive elements from DNA sequences. Comput Chem 20:119–121

    Article  PubMed  CAS  Google Scholar 

  41. Kalendar R, Vicient CM, Peleg O et al (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166:1437–1450

    Article  PubMed  CAS  Google Scholar 

  42. Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 98:8714–8719

    Article  PubMed  CAS  Google Scholar 

  43. Kapitonov VV, Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci U S A 103:4540–4545

    Article  PubMed  CAS  Google Scholar 

  44. Kolpakov R, Bana G, Kucherov G (2003) mreps: Efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31:3672–3678

    Article  PubMed  CAS  Google Scholar 

  45. Kurtz S, Choudhuri JV, Ohlebusch E et al (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    Article  PubMed  CAS  Google Scholar 

  46. Kurtz S, Schleiermacher C (1999) REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics 15:426–427

    Article  PubMed  CAS  Google Scholar 

  47. Lai J, Li Y, Messing J et al (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  PubMed  CAS  Google Scholar 

  48. Lapitan NLV (1992) Organization and evolution of higher plant nuclear genomes. Genome 35:171–181

    CAS  Google Scholar 

  49. Lee C, Ritchie DBC, Lin CC (1994) A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species. Chromosome Res 2:293–306

    Article  PubMed  CAS  Google Scholar 

  50. Lefebvre A, Lecroq T, Dauchel H et al (2003) FORRepeats: detects repeats on entire chromosomes and between genomes. Bioinformatics 19:319–326

    Article  PubMed  CAS  Google Scholar 

  51. Li M, Ma B, Kisman D et al (2004a) Patternhunter II: highly sensitive and fast homology search. J Bioinform Comput Biol 2:417–439

    Article  PubMed  CAS  Google Scholar 

  52. Li R, Ye J, Li S et al (2005) ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput Biol 1:e43

    Article  PubMed  CAS  Google Scholar 

  53. Li X, Rao S, Wang Y et al (2004b) Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res 32:2685–2694

    Article  PubMed  CAS  Google Scholar 

  54. Li YC, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  PubMed  CAS  Google Scholar 

  55. Lundblad V, Wright WE (1996) Telomeres and telomerase: A simple picture becomes complex. Cell 87:369–375

    Article  PubMed  CAS  Google Scholar 

  56. Ma B, Tromp J, Li M (2002) PatternHunter: faster and more sensitive homology search. Bioinformatics 18:440–445

    Article  PubMed  CAS  Google Scholar 

  57. Mak D, Gelfand Y, Benson G (2006) Indel seeds for homology search. Bioinformatics 22:e341–e349

    Article  PubMed  CAS  Google Scholar 

  58. Manber U, Myers G (1993) Suffix arrays: a new method for on-line string searches. SIAM J Comput 22:935–948

    Article  Google Scholar 

  59. McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362–367

    Article  PubMed  CAS  Google Scholar 

  60. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  61. Morgante M, Brunner S, Pea G et al (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  62. Müller HJ (1930) Types of viable variations induced by X-rays in Drosophila. Genetics 22:299–337

    Article  Google Scholar 

  63. Nagl W (1976) DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261:614–615

    Article  PubMed  CAS  Google Scholar 

  64. Ohshima K, Okada N (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 110:475–490

    Article  PubMed  CAS  Google Scholar 

  65. Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363

    Article  PubMed  CAS  Google Scholar 

  66. Pevzner PA, Tang H, Tesler G (2004) De novo repeat classification and fragment assembly. Genome Res 14:1786–1796

    Article  PubMed  CAS  Google Scholar 

  67. Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21(Suppl 1):i351–i358

    Article  PubMed  CAS  Google Scholar 

  68. Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390:3–17

    Article  PubMed  CAS  Google Scholar 

  69. Quesneville H, Bergman CM, Andrieu O et al (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1:166–175

    Article  PubMed  CAS  Google Scholar 

  70. Ruitberg CM, Reeder DJ, Butler JM (2001) STRBase: a short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res 29:320–322

    Article  PubMed  CAS  Google Scholar 

  71. Saha S, Bridges S, Magbanua ZV et al. (2008) Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res (in press)

  72. Sharma D, Issac B, Raghava GP et al (2004) Spectral Repeat Finder (SRF): identification of repetitive sequences using Fourier transformation. Bioinformatics 20:1405–1412

    Article  PubMed  CAS  Google Scholar 

  73. Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:683–708

    PubMed  CAS  Google Scholar 

  74. Smit AFA, Hubley R, Green P (1996–2004) RepeatMasker Open-3.0. http://www.repeatmasker.org

  75. Sonnhammer ELL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:1–10

    Article  Google Scholar 

  76. Sperber GO, Airola T, Jern P et al (2007) Automated recognition of retroviral sequences in genomic data—RetroTector©. Nucleic Acids Res 35:4964–4976

    Article  PubMed  CAS  Google Scholar 

  77. Strachan T, Read AP (1999) Human molecular genetics, 2nd edn. Wiley & Sons, New York

    Google Scholar 

  78. Syvanen M (1984) The evolutionary implications of mobile genetic elements. Annual Rev Genet 18:271–293

    Article  CAS  Google Scholar 

  79. Tan AC, Gilbert D (2003) Ensemble machine learning on gene expression data for cancer classification. Appl Bioinformatics 2:S75–S83

    PubMed  CAS  Google Scholar 

  80. Taneda A (2004) Adplot: detection and visualization of repetitive patterns in complete genomes. Bioinformatics 20:701–708

    Article  PubMed  CAS  Google Scholar 

  81. Temnykh S, DeClerck G, Lukashova A et al (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  82. Timberlake WE (1978) Low repetitive DNA content in Aspergillus nidulans. Science 202:973–975

    Article  PubMed  CAS  Google Scholar 

  83. Toth G, Deak G, Barta E et al (2006) PLOTREP: a web tool for defragmentation and visual analysis of dispersed genomic repeats. Nucleic Acids Res 34:W708–W713

    Article  PubMed  CAS  Google Scholar 

  84. Tu Z (2001) Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 98:1699–1704

    Article  PubMed  CAS  Google Scholar 

  85. Volfovsky N, Haas BJ, Salzberg SL (2001) A clustering method for repeat analysis in DNA sequences. Genome Biol 2:research0027.1–0027.11

    Google Scholar 

  86. Wang J, Wong GK, Ni P et al (2002) RePS: a sequence assembler that masks exact repeats identified from the shotgun data. Genome Res 12:824–831

    Article  PubMed  CAS  Google Scholar 

  87. Warburton PE, Giordano J, Cheung F et al (2004) Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res 14:1861–1869

    Article  PubMed  CAS  Google Scholar 

  88. Weiner P (1973) Linear pattern matching algorithm. In: Proceedings of the 14th annual IEEE symposium on switching and automata theory, University of Iowa, Iowa City, 15–17 Oct 1973

  89. Wessler SR (1997) Transposable elements and the evolution of gene expression. Exp Biol 1039:115–122

    Google Scholar 

  90. Wicker T, Matthews DE, Keller B (2002) TREP: a database for Triticeae repetitive elements. Trends Plant Sci 7:561–562

    Article  CAS  Google Scholar 

  91. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  92. Yang G, Hall TC (2003) MAK, a computational tool kit for automated MITE analysis. Nucleic Acids Res 31:3659–3665

    Article  PubMed  CAS  Google Scholar 

  93. Zuckerkandl E, Hennig W (1995) Tracking heterochromatin. Chromosoma 104:75–83

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by the National Science Foundation (DBI-0421717 to D.G.P. and EPS-0556308 to S.M.B.), the United States Department of Agriculture (CSREES-2006-34506-17290 and ARS-58-6402-7-241 to D.G.P.), and the Mississippi Corn Promotion Board (to D.G.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Peterson.

Additional information

Communicated by Dr. Ray Ming

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Bridges, S., Magbanua, Z.V. et al. Computational Approaches and Tools Used in Identification of Dispersed Repetitive DNA Sequences. Tropical Plant Biol. 1, 85–96 (2008). https://doi.org/10.1007/s12042-007-9007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-007-9007-5

Keywords

Navigation