Skip to main content
Log in

Foetal haemoglobin elevation, unfavourable prognosis, and protective role of genetic variants HBG2 rs7482144, HBS1L-MYB rs9399137 and BCL11A rs4671393 in children with ALL

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In acute lymphoblastic leukaemia (ALL), elevated foetal haemoglobin (HbF) levels have been associated with the prognosis of patients. Genetic variants in HbF regulatory genes: BAF chromatin remodelling complex subunit (BCL11A), HBS1L-MYB transcriptional GTPase intergenic region (HBS1L-MYB), Krüppel-like factor 1 (KLF1), haemoglobin gamma subunit 2 (HBG2), haemoglobin gamma subunit 1 (HBG1), and haemoglobin subunit beta pseudogene 1 (HBBP1) are often associated with elevated HbF concentration. This study investigated the association of genetic variants in HbF regulatory genes with HbF concentration, unfavourable prognosis, and outcome in children with ALL. We quantified HbF concentration and genotyped 17 genetic variants in 48 patients with ALL and 64 children without ALL as a reference group. HbF concentration was higher in patients than in the reference group (4.4% vs 1.4%), and 75% (n = 36) of the patients had HbF > 2.5%. Unfavourable prognosis ALL was established in 68.8% (n = 33) of the patients. Variant HBG2 rs7482144 was associated with high HbF concentration (P = 0.015); while HBS1L-MYB rs9399137 (P = 0.001), HBG2 rs7482144 (P = 0.001) and the β-globin genes HBG2, HBG1, and HBPP1 haplotype TGC (P = 0.017) with unfavourable prognosis ALL. Additionally, variant BCL11A rs4671393 showed a protective role (P = 0.0001). In conclusion, variants HBG2 rs7482144, HBS1L-MYB rs9399137 and BCL11A rs4671393 may play a significant role in ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adekile A. 2021 The genetic and clinical significance of fetal hemoglobin expression in sickle cell disease. Med. Princ. Pract. 30, 201–211.

    Article  PubMed  Google Scholar 

  • Alter B. P., Rappeport J. M., Huisman T. H., Schroeder W. A. and Nathan D. G. 1976 Fetal erythropoiesis following bone marrow transplantation. Blood 48, 843–853.

    Article  CAS  PubMed  Google Scholar 

  • Brancaleoni V., Moukhadder H. M., Consonni D., Koussa S., Di Piero E., Cappellini M. D. et al. 2019 Common fetal hemoglobin variants in Lebanese patients bearing the codon twenty-nine beta gene mutation associated with different thalassemia phenotypes. Ann. Hematol. 98, 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Colunga-Pedraza P. R., Gómez-Cruz G. B., Colunga-Pedraza J. E. and Ruiz-Argüelles G. J. 2018 Geographic hematology: some observations in Mexico. Acta Haematol. 140, 114–120.

    Article  PubMed  Google Scholar 

  • Demirci S., Leonard A., Essawi K. and Tisdale J. F. 2021 CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol. Ther. Methods Clin. Dev. 23, 276–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diagnóstico oportuno de la leucemia linfoblástica aguda, en pediatría en primer y segundo nivel de atención. Guía de Evidencias y Recomendaciones: Guía de Práctica Clínica. México, CENETEC;2017 [August 23rd, 2023]. Avaliable at http://www.cenetec-difusion.com/CMGPC/SS-061-08/ER.pdf.

  • Fong C., Mendoza Y. and Barreto G. 2020 Genetic variants in the G gamma-globin promoter modulate fetal hemoglobin expression in the Colombian population. Genet. Mol. Biol. 43, e20190076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galarneau G., Palmer C. D., Sankaran V. G., Orkin S. H., Hirschhorn J. N. and Lettre G. 2010 Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat. Genet. 42, 1049–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gell D. A. 2018 Structure and function of haemoglobins. Blood Cells Mol. Dis. 70, 13–42.

    Article  CAS  PubMed  Google Scholar 

  • Genc A., Tastemir-Korkmaz D., Bayram S. and Rencuzogullari E. 2020 The effect of five single nucleotide polymorphisms on Hb F variation of β-thalassemia traits and hematologically normal individuals in Southeast Turkey. Hemoglobin 44, 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Greig K. T., Carotta S. and Nutt S. L. 2008 Critical roles for c-Myb in hematopoietic progenitor cells. Semin. Immunol. 20, 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Hara R., Kitahara T., Numata H., Toyosaki M., Watanabe S., Kikkawa E. et al. 2023 Fetal hemoglobin level predicts lower-risk myelodysplastic syndrome. Int. J. Hematol. 117, 684–693.

    Article  CAS  PubMed  Google Scholar 

  • He Z., Beaumont M. and Yu F. 2017 Effects of the ordering of natural selection and population regulation mechanisms on Wright-Fisher models. G3 (Bethesda). 7, 2095-2106.

  • Ibarra B., Montes J., Becerra C., Perea F. J., Barros-Núñez J. P., Aguilar-Luna J. C. et al. 1991 Fetal hemoglobin in children with different neoplasms. Sangre (barc). 36, 383–386.

    CAS  PubMed  Google Scholar 

  • Jonxis J. H. P. and Huisman T. H. J. 1956 The detection and estimation of fetal hemoglobin by means of the alkali denaturation test. Blood 11, 1009–1018.

    Article  PubMed  Google Scholar 

  • Kamatani Y., Matsuda K., Okada Y., Kubo M., Hosono N., Daigo Y. et al. 2010 Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat. Genet. 42, 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Keller M. F., Reiner A. P., Okada Y., van Rooij F. J. A., Johnson A. D., Chem M. H. et al. 2014 Trans-ethnic meta-analysis of white blood cell phenotypes. Hum Mol Genet. 23, 6944–6960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Y., Zhou L., Yi S., Chen Y., Tang Y., Yi S. et al. 2017 The association between four SNPs (rs7482144, rs4671393, rs28384513 and rs4895441) and fetal hemoglobin levels in Chinese Zhuang β-thalassemia intermedia patients. Blood Cells Mol. Dis. 63, 52–57.

    Article  CAS  PubMed  Google Scholar 

  • Lakkakula B. V. K. S. and Pattnaik S. 2021 The HBG2 rs7482144 (C>T) polymorphism is linked to HbF levels but not to the severity of sickle cell anemia. J. Pediatr. Genet. 12, 129–134.

    PubMed  PubMed Central  Google Scholar 

  • Langer A. L. and Esrick E. B. 2021 β-Thalassemia: evolving treatment options beyond transfusion and iron chelation. Hematol. Am. Soc. Hematol. Edu. Program 1, 600–606.

    Article  Google Scholar 

  • Laurentino M. R., Barbosa M. C., Santos T. E. J., Perdigão A. C. B., Araújo F. M. C. and Lemes R. P. G. 2018 Analysis of BCL11A gene polymorphisms and hemolysis parameters in patients with sickle-cell disease. J Bras Patol Med Lab. 54, 132–137.

    Article  CAS  Google Scholar 

  • Leonardo F. C., Brugnerotto A. F., Domingos I. F., Fertrin K. Y., de Albuquerque D. M., Bezerra M. A. C. et al. 2016 Reduced rate of sickle-related complications in Brazilian patients carrying HbF-promoting alleles at the BCL11A and HMIP-2 loci. Br. J. Haematol. 173, 456–460.

    Article  CAS  PubMed  Google Scholar 

  • Lübbert M., Ihorst G., Sander P. N., Bogatyreva L., Becker H., Wijermans P. W. et al. 2017 Elevated fetal haemoglobin is a predictor of better outcome in MDS/AML patients receiving 5-aza-2′-deoxycytidine (Decitabine). Br. J. Haematol. 176, 609–617.

    Article  PubMed  Google Scholar 

  • Mallick D., Karmakar R., Barui G., Gon S. and Chakrabarti S. 2015 The prognostic significance of HbF in childhood hematological malignancies. Indian J. Hematol. Blood Transfus. 31, 116–120.

    Article  PubMed  Google Scholar 

  • Malmberg R. L. and Mauricio R. 2005 QTL-based evidence for the role of epistasis in evolution. Genet. Res. 86, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Manco L., Santos R., Rocha C., Relvas L., Bento C., Maia T. et al. 2022 Hb F levels in β-thalassemia carriers and normal individuals: known and unknown quantitative trait loci in the β-globin gene cluster. Hemoglobin 46, 168–175.

    Article  CAS  PubMed  Google Scholar 

  • Manning J. M., Manning L. R., Dumuolin A., Padovan J. C. and Chait B. 2020 Embryonic and fetal human hemoglobins: structures, oxygen binding, and physiological roles. Subcell. Biochem. 94, 275–296.

    Article  CAS  PubMed  Google Scholar 

  • Menzel S. and Thein S. L. 2019 Genetic modifiers of fetal haemoglobin in sickle cell disease. Mol. Diagn. Ther. 23, 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Miller B. A., Olivieri N., Salameh M., Ahmed M., Antognetti G., Huisman T. H. J. et al. 1987 Molecular analysis of the high-hemoglobin-F phenotype in Saudi Arabian sickle cell anemia. N. Engl. J. Med. 316, 244–250.

    Article  CAS  PubMed  Google Scholar 

  • Mohammad S. N. N. A. I., Iberahim S., Wan Ab Rahman W. S., Hassan M. N., Edinur H. A., Azlan M. et al. 2022 Single nucleotide polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and their relation to high fetal hemoglobin levels that alleviate anemia. Diagnostics (basel) 12, 1374.

    Article  CAS  PubMed  Google Scholar 

  • Momčilović S., Bogdanović A., Milošević M. S., Mojsilović S., Marković D. C., Kočović D. M. et al. 2023 Macrophages provide essential support for erythropoiesis, and extracellular ATP contributes to a erythropoiesis-supportive microenvironment during repeated psychological stress. Int. J. Mol. Sci. 24, 1137.

    Article  Google Scholar 

  • Norton L. J., Funnell A. P., Burdach J., Wienert B., Kurita R., Nakamura Y. et al. 2017 KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells. Blood Adv. 1, 685–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Núñez-Enríquez J. C. and Aranguré J. M. 2015 Biología molecular y leucemia: E2A-PBX1 y recaída al sistema nervioso central. Rev. Med. Inst. Mex. Seguro Soc. 53, S236–S239.

    PubMed  Google Scholar 

  • Park S. Y., Lee S. J., Cho H. J., Kim J. T., Yoon H. R., Lee K. H. et al. 2019 Epsilon-globin HBE1 enhances radiotherapy resistance by down-regulating BCL11A in colorectal cancer cells. Cancers (besel). 11, 498.

    Article  CAS  Google Scholar 

  • Pui C. H., Relling M. V., Sandlund J. T., Downing J. R., Campana D. and Evans W. E. 2004 Rationale and design of total therapy study XV for newly diagnosed childhood acute lymphoblastic leukemia. Ann. Hematol. 83, S124–S126.

    PubMed  Google Scholar 

  • Rautonen J. and Siimes M. A. 1990 Initial blood fetal hemoglobin concentration is elevated and is associated with prognosis in children with acute lymphoid or myeloid leukemia. Blut 61, 17–20.

    Article  CAS  PubMed  Google Scholar 

  • Rizo-de la Torre L. C., Borrayo-López F. J., Perea-Díaz F. J., Aquino E., Venegas M., Hernández-Carbajal C. et al. 2022 Fetal hemoglobin regulating genetic variants identified in homozygous (HbSS) and heterozygous (HbSA) subjects from South Mexico. J. Trop. Pediatr. 68, fmac073.

  • Seachrist D. D., Hannigan M. M., Ingles N. N., Webb B. M., Weber-Bonk K. L., Yu P. et al. 2020 The transcriptional repressor BCL11A promotes breast cancer metastasis. J. Biol. Chem. 295, 11707–11719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H., Li C., Feng W., Yue J., Song J., Peng A. et al. 2020 Wang H. BCL11A is oncogenic and predicts poor outcomes in natural killer/T-cell lymphoma. Front. Pharmacol. 11, 820.

  • Siegel R. L., Miller K. D. and Jemal A. 2018 Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30.

    Article  PubMed  Google Scholar 

  • Stadhouders R., Aktuna S., Thongjuea S., Aghajanirefah A., Pourfarzad F., van Ijcken W. et al. 2014 HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J. Clin. Invest. 124, 1699–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele M. G. and Narendran A. 2012 Mechanisms of defective erythropoiesis and anemia in pediatric acute lymphoblastic leukemia (ALL). Ann. Hematol. 91, 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  • Stomper J., Ihorst G., Suciu S., Sander P. N., Becker H., Wijermans P. W. et al. 2019 Fetal hemoglobin induction during decitabine treatment of elderly patients with unfavorable myelodysplastic syndrome or acute myeloid leukemia: a potential dynamic biomarker of outcome. Haematologica 104, 59–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terwilliger T. and Abdul-Hay M. J. 2017 Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 7, e577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbach D. M. and Weinberg C. R. 2000 The use of case-parent triads to study joint effects of genotype and exposure. Am. J. Hum. Genet. 66, 251–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalobos-Arámbula A. R., Aguilar-Luna J. C., Esparza A., Perea F. J., de Loza R., Hernández-Córdova A. et al. 1993 Fetal hemoglobin and the gamma G/gamma A chain ratio in children with acute lymphoblastic leukemia L1 and L2. Sangre (barc). 38, 31–35.

    PubMed  Google Scholar 

  • Wang S. and He G. 2016 Revision to the WHO classification of acute lymphoblastic leukemia. J. Transl. Int. Med. 4, 147–149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L. L., Yan D., Tang X., Zhang M., Liu S., Wang Y. et al. 2021 High expression of BCL11A predicts poor prognosis for childhood MLL-r ALL. Front. Oncol. 11, 755188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward L. D. and Kellis M. 2012 HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934.

    Article  CAS  PubMed  Google Scholar 

  • Wilber A., Nienhuis A. W. and Persons D. A. 2011 Transcriptional regulation of fetal to adult hemoglobin switching new therapeutic opportunities. Blood 117, 3945–3953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wysocki P. T., Izumchenko E., Meir J., Ha P. K., Sidransky D. and Brait M. 2016 Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget 7, 66239–66254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J., Yang Y., Zhang D., Zhou L., Tao L. and Lu L. M. 2017 Genetic polymorphisms and plasma levels of BCL11A contribute to the development of laryngeal squamous cell carcinoma. PLoS One 12, e0171116.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the haematology residents who helped in enrolling patients and collecting samples and the Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT) for granting a scholarship to the first author of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LOURDES DEL CARMEN RIZO-DE LA TORRE.

Additional information

Corresponding editor: Karthik Baradwaj Talapaka

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BORRAYO-LÓPEZ, F.J., IBARRA-CORTÉS, B., PEREA-DÍAZ, F.J. et al. Foetal haemoglobin elevation, unfavourable prognosis, and protective role of genetic variants HBG2 rs7482144, HBS1L-MYB rs9399137 and BCL11A rs4671393 in children with ALL. J Genet 103, 17 (2024). https://doi.org/10.1007/s12041-024-01470-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-024-01470-0

Keywords

Navigation