Skip to main content
Log in

Estimation of genetic diversity of the exotic Indian trout populations by using microsatellite markers

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta fario) are popular salmonid species that are reared for sport and recreational activities worldwide. In India, they were introduced and successfully established in the late 19th and early 20th centuries by the European settlers. However, until now, no studies have analysed the genetic integrity of wild trout populations in India. Therefore, this study aimed to analyse the genetic integrity of the wild rainbow trout populations from south India, one wild rainbow trout population from north India, and one wild brown trout population from north India. Genetic diversity studies revealed low genetic diversity in all the population with genetic bottlenecks in two trout populations from south India and disruption of alleles in the populations from north India. The results showed that the south Indian trout populations are in a comparatively poor condition than the north Indian trout populations, and stocking efforts have recently been carried out to enhance the genetic diversity of south Indian trout populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abadía-Cardoso A., Hernández-Guzmán R., Varela-Romero A., Garza J. C. and León G. D. 2021 Population genetics and species distribution modeling highlight conservation needs of the endemic trout from the Northern Sierra Madre Occidental. Conserv. Genet. 22, 629–643.

    Article  Google Scholar 

  • Abdul-Muneer P. M. 2014 Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet. Res. Int. 1–11, 691759.

    Google Scholar 

  • Abdul Muneer P. M., Gopalakrishnan A., Musammilu K. K., Mohindra V., Lal K. K., Basheer V. S. et al. 2009 Genetic variation and population structure of endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers. Mol. Biol. Rep. 36, 1779–1791.

    Article  CAS  PubMed  Google Scholar 

  • Abdul Muneer P. M., Gopalakrishnan A., Musammilu K. K., Basheer V. S., Mohindra V., Lal K. K. et al. 2012 Comparative assessment of genetic variability in the populations of endemic and endangered Yellow Catfish, Horabagrus brachysoma (Teleostei: Horabagridae), based on allozyme, RAPD, and microsatellite markers. Biochem. Genet. 50, 192–212

    Article  CAS  PubMed  Google Scholar 

  • Ali S. 2017 Current status and strategies of rainbow trout Oncorhynchus mykiss farming in India. Int. J. Aquacult. 7, 23–30

    Google Scholar 

  • Anon 1987 Trout fishery in Nilgiris. Directorate of Fisheries, Madras, Information Brochure 9, 13.

    Google Scholar 

  • Apostolidis A. P., Madeira M. J., Hansen M. M. and Machordom A. 2008 Genetic structure and demographic history of brown trout (Salmo trutta) populations from the southern Balkans. Freshw. Biol. 53, 1555–1566.

    Article  Google Scholar 

  • Arias-Pérez A., Fernández-Tajes J., Gaspar M. B. and Méndez J. 2012 Isolation of microsatellite markers and analysis of genetic diversity among east atlantic populations of the sword razor shell Ensis siliqua: a tool for population management. Biochem. Genet. 50, 397–415.

    Article  PubMed  Google Scholar 

  • Barat A., Sahoo P. K., Kumar R., Mir J. I., Ali S., Patiyal R. S. and Singh A. K. 2015 Molecular characterization of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792) stocks in India. J. Genet. 94, 13–18.

    Article  Google Scholar 

  • Bielikova O., Tarasjuk S., Mruk A., Zaloilo O. and Didenko A. 2021 Microsatellite-based analysis of genetic diversity and population structure of rainbow trout (Oncorhynchus mykiss) Cultured in Ukraine. Genet. Aquat. 5, 29–39.

    Google Scholar 

  • Binur R. and Pancoro A. D. I. 2017 Inbreeding depression level of post-larvae freshwater prawn (Macrobrachium rosenbergii) from several hatcheries in Java. Indonesia. Biodiversitas. 18, 609–618.

    Article  Google Scholar 

  • Behnke R. J. 1992 Native trout of western North America. American Fisheries Society Monograph 6, pp. 275. Bethesda.

  • Day F. 1873 The fishes of India, being a natural history of the fishes known inhabit the seas and freshwaters of India, Burma & Ceylon. Vols I & II. Today and Tomorrow’s Book Agency, New Delhi.

  • Devaa J. C. and Ramesh U. 2021 Current status of rainbow trout in Western Ghats, Southern India: A fish diversity and water quality assessment study. Indian J. Ecol. 48, 549–557.

    Google Scholar 

  • Devaa J. W., Sharma A. and Uthandakalaipandian R. 2021 Current status of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792), Fisheries in Munnar hills of south India. Asian Fish. Sci. 34, 344–354.

    Google Scholar 

  • Devaa W. and Ramesh U. 2022 Remembering the remnants of trout fisheries in the Nilgiris, Western Ghats. South India. Curr. Sci. 122, 384.

    Google Scholar 

  • Devaa W. and Ramesh U. 2023 Remnants of the rainbow trout (Oncorhynchus mykiss) stock in Kodaikanal hills, Western Ghats. South India. Curr. Sci. 125, 113.

    Google Scholar 

  • Deiner K., Garza J. C., Coey R. and Girman D. J. 2007 Population structure and genetic diversity of trout (Oncorhynchus mykiss) above and below natural and man-made barriers in the Russian River. California. Conserv. Genet. 8, 437–454.

    Article  Google Scholar 

  • Dieringer D. and Schlötterer C. 2003 Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169.

    Article  CAS  Google Scholar 

  • Eaton K. R., Loxterman J. L. and Keeley E. R. 2018 Connections and containers: using genetic data to understand how watershed evolution and human activities influence cutthroat trout biogeography. PLoS One 13, e0202043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L. and Lischer H. E. 2010 Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567.

    Article  PubMed  Google Scholar 

  • Fernandes C. R. M., Martins C. F., Ferreira K. M. and Del Lama M. A. 2012 Gene variation, population differentiation, and sociogenetic structure of nests of Partamona seridoensis (Hymenoptera: Apidae, Meliponini). Biochem. Genet. 50, 325–335.

    Article  CAS  PubMed  Google Scholar 

  • Freyhof J. 2011 Salmo trutta. The IUCN Red List of Threatened Species 2011: e.T19861A9050312. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T19861A9050312.en (accessed last on 25.03.2022).

  • Garza J. C. and Williamson E. G. 2001 Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318.

    Article  CAS  PubMed  Google Scholar 

  • Gjedrem T. (ed.) 2005 Selection and breeding programs in aquaculture, vol. 2005, pp. 360. Dordrecht, The Netherlands..

  • Gopalakrishnan A., Lal K. K. and Ponniah A. G. 1999 Conservation of the Nilgiri rainbow trout in India. Naga: ICLARM Q, the World Fish Center. 22, 16–19.

  • Gross R., Lulla P. and Paaver T. 2007 Genetic variability and differentiation of rainbow trout (Oncorhynchus mykiss) strains in northern and Eastern Europe. Aquaculture 272, S139–S146.

    Article  Google Scholar 

  • Hansen M. M., Kenchington E. and Nielsen E. E. 2001 Assigning individual fish to populations using microsatellite DNA markers. Fish Fish. 2, 93–112.

    Article  Google Scholar 

  • Hassan N. U. and Pandey D. N. 2012 Present status of trout fisheries in Jammu and Kashmir. IOSR J. Pharm. 2, 35–37.

    Google Scholar 

  • ICAR-DCFR 2021 Annual report 2021 ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India

  • Jan M., Jan N. and Ahmed I. 2018 Length weight relationship (LWR) and condition factor (K) of Brown Trout, Salmo trutta farioJ. Ecophysiol. Occup. Health. 73-79.

  • Jhingran V. G. and Sehgal K. L. 1978 Coldwater fisheries of India. Inland Fisheries Society of India. p. 239.

  • Kalinowski S. T., Taper M. L. and Marshall T. C. 2007 Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106.

    Article  PubMed  Google Scholar 

  • Kohout J., Šedivá A., Apostolou A., Stefanov T., Marić S., Gaffaroğlu M. et al. 2013 Genetic diversity and phylogenetic origin of brown trout Salmo trutta populations in eastern Balkans. Biologia. 68, 1229–1237.

    Article  Google Scholar 

  • Kuruppan 1989 Present status, prospects and future scope of fisheries in upland waters of Tamil Nadu. In Proceedings of the National Workshop on Research and Development Needs of Coldwater Fisheries, Haldwani. Abstract No. 12.

  • Liu Z. J. and Cordes J. F. 2004 DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238, 1–37.

    Article  CAS  Google Scholar 

  • Mackay W. S. S. 1945 Trout of Travancore. J. Bombay Nat. Hist. Soc. 45 (3 & 4), pp. 352–373 and pp. 542–547.

  • MacCrimmon H. R. 1971 World distribution of rainbow trout (Salmo gairdneri). J. Fish. Res. 28, 663–704.

    Article  Google Scholar 

  • McKinney T., Speas D. W., Rogers R. S. and Persons W. R. 2001 Rainbow trout in a regulated river below Glen Canyon Dam, Arizona, following increased minimum flows and reduced discharge variability. N. Am. J. Fish. Manag. 21, 216–222.

    Article  Google Scholar 

  • Mitchell F. J. 1918 How trout were introduced into Kashmir. J. Bombay Nat. Hist. Soc. 26, 295–299.

    Google Scholar 

  • Narum S. R., Contor C., Talbot A. and Powell M. S. 2004 Genetic divergence of sympatric resident and anadromous forms of Oncorhynchus mykiss in the Walla Walla River, USA. J. Fish Biol. 65, 471–488.

    Article  Google Scholar 

  • Nei M. 1978 Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neville H. M., Dunham J. B. and Peacock M. M. 2006 Landscape attributes and life history variability shape genetic structure of trout populations in a stream network. Landsc. Ecol. 21, 901–916.

    Article  Google Scholar 

  • Nikbakht G., Esmailnejad A. and Barjesteh N. 2013 LEI0258 microsatellite variability in Khorasan, Marandi, and Arian chickens. Biochem. Genet. 51, 341–349.

    Article  CAS  PubMed  Google Scholar 

  • Petit-Marty N. P., Min L., Tan I. Z., Chung A., Terrasa B., Guijarro B. et al. 2022 Declining population sizes and loss of genetic diversity in commercial fishes: a simple method for a first diagnostic. Front. Mar. Sci. 9, 872537.

    Article  Google Scholar 

  • Pilgrim B. L., Perry R. C., Keefe D. G., Perry E. A. and Dawn Marshall H. 2012 Microsatellite variation and genetic structure of brook trout (Salvelinus fontinalis) populations in Labrador and neighboring Atlantic Canada: evidence for ongoing gene flow and dual routes of post-Wisconsinan colonization. Ecol. Evol. 2, 885–898.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piry S., Luikart G. and Cornuet J. M. 1999 Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502–503.

    Article  Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujolar J. M., Lucarda A. N., Simonato M. and Patarnello T. 2011 Restricted gene flow at the micro-and macro-geographical scale in marble trout based on mtDNA and microsatellite polymorphism. Front. Zool. 8, 1–10.

    Article  Google Scholar 

  • Queller D. C., Strassmann J. E. and Hughes C. R. 1993 Microsatellites and kinship. Trends Ecol. Evol. 8, 285–288.

    Article  CAS  PubMed  Google Scholar 

  • Rexroad Iii C. E., Coleman R. L., Gustafson A. L., Hershberger W. K. and Killefer J. 2002 Development of rainbow trout microsatellite markers from repeat enriched libraries. J. Mar. Biotechnol. 4, 12–16.

  • Sharma R. K. and Bhat R. A. 2015 Length-weight relationship, condition factor of rainbow trout (Oncorhynchus mykiss) from Kashmir waters. Ann. Biol. Res. 6, 25–29.

    Google Scholar 

  • Russell D. W. and Sambrook J. 2001 Molecular cloning: a laboratory manual, vol. 1, pp. 112. Cold Spring Harbor, NY.

  • Sanetra M., Henning F., Fukamachi S. and Meyer A. 2009 A microsatellite-based genetic linkage map of the cichlid fish, Astatotilapia burtoni (Teleostei): a comparison of genomic architectures among rapidly speciating cichlids. Genetics 182, 387–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz R. S. and May B. 2008 Genetic evaluation of isolated populations for use in reintroductions reveals significant genetic bottlenecks in potential stocks of Sacramento perch. Trans. Am. Fish. Soc. 137, 1764–1777.

    Article  Google Scholar 

  • Silverstein J. T., Rexroad C. E. III. and King T. L. 2004 Genetic variation measured by microsatellites among three strains of domesticated rainbow trout (Oncorhynchus mykiss, Walbaum). Aquac. Res. 35, 40–48.

    Article  CAS  Google Scholar 

  • Sehgal K. L. 1999 Coldwater fish and fisheries in the Western Ghats, India. Fish Fish. High. Alti. Asia 385, 103.

    Google Scholar 

  • Shah T. H., Balkhi M. H., Najar A. M. and Asimi O. A. 2011 Morphometry, length-weight relationship and condition factor of farmed female rainbow trout (Oncorhynchus mykiss Walbaum) in Kashmir. Indian J. Fish. 58, 51–56.

    Google Scholar 

  • Sharma P., Pandey N. N., Haldar R. S. and Sarma D. 2018 Trout farming in Sikkim: a glimpse at present status and way forward. Bulletin 31, 1-79.

  • Sharma M. 2019 The current state of trout farming in Himachal Pradesh and its potential for future expansion. Bhartiya Krishi Anusandhan Patrika. 34, 58–61.

    Article  Google Scholar 

  • Sonesson A. K., Woolliams J. A. and Meuwissen T. H. 2005 Kinship, relationship and inbreeding. In Selection and breeding programs in aquaculture. pp. 73–87. Springer, Dordrecht.

  • Supungul P., Sootanan P., Klinbunga S., Kamonrat W., Jarayabhand P. and Tassanakajon A. 2000 Microsatellite polymorphism and the population structure of the black tiger shrimp (Penaeus monodon) in Thailand. Mar. Biotechnol. 2, 339–347.

    Article  CAS  Google Scholar 

  • Taylor E. B., Tamkee P., Keeley E. R. and Parkinson E. A. 2010 Conservation prioritization in widespread species: the use of genetic and morphological data to assess population distinctiveness in rainbow trout (Oncorhynchus mykiss) from British Columbia, Canada. Evol. Appl. 4, 100–115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur K. L., Kumar K., Lal K. K., Pandey G. C. and Ponniah A. G. 1997 Effect of extender composition and activating solution on viability of cryopreserved rainbow trout (Oncorhynchus mykiss) spermatozoa. J. Adv. Zool. 18, 12–17.

    Google Scholar 

  • Vega-Trejo R., Head M. L. and Jennions M. D. 2016 Inbreeding depression does not increase after exposure to a stressful environment: a test using compensatory growth. BMC Evol. Biol. 16, 1–12.

    Article  Google Scholar 

  • Vitorino C. A., Nogueira F., Souza I. L., Araripe J. and Venere P. C. 2017 Low genetic diversity and structuring of the Arapaima (Osteoglossiformes, Arapaimidae) population of the Araguaia-Tocantins basin. Front. Genet. 8, 159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walters C. J., Hilborn R. and Christensen V. 2008 Surplus production dynamics in declining and recovering fish populations. Can. J. Fish. Aquat. 65, 2536–2551.

    Article  Google Scholar 

  • Ward R. D., Jorstad K. E. and Maguire G. B. 2003 Microsatellite diversity in rainbow trout (Oncorhynchus mykiss) introduced to Western Australia. Aquaculture 219, 169–179.

    Article  CAS  Google Scholar 

  • Webster M. S. and Reichart L. 2005 Use of microsatellites for parentage and kinship analyses in animals. In Methods in enzymology, pp. 222-238. Academic Press, Cambridge.

  • Whiteley A. R., Hastings K., Wenburg J. K., Frissell C. A., Martin J. C. and Allendorf F. W. 2010 Genetic variation and effective population size in isolated populations of coastal cutthroat trout. Conserv. Genet. 11, 1929–1943.

    Article  Google Scholar 

  • Wright S. 1984 Evolution and the genetics of populations, vol. 2: Theory of gene frequencies (vol. 2). University of Chicago press, Chicago.

  • Wright J. M. and Bentzen P. 1995 Microsatellites: genetic markers for the future. In Molecular genetics in fisheries, pp. 117-121. Springer, Dordrecht.

  • Xu Q. and Liu R. 2011 Development and characterization of microsatellite markers for genetic analysis of the swimming crab, Portunus trituberculatus. Biochem. Genet. 49, 202–212.

    Article  CAS  PubMed  Google Scholar 

  • Yan H. F., Kyne P. M., Jabado R. W., Leeney R. H., Davidson L. N., Derrick D. H. et al. 2021 Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Sci. Adv. 7, eabb6026.

  • Yousefian M., Laloei F., Hedayatifard M., Bahrekazemi M., Tagavi M. J., Irani M. et al. 2012 Microsatellite diversity in rainbow trout (Oncorhynchus mykiss) stocks of different origin. Middle East J. Sci. Res. 11, 1196–1201.

    Google Scholar 

  • Zardoya R., Vollmer D. M., Craddock C., Streelman J. T., Karl S. and Meyer A. 1996 Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proc. Royal Soc. B. 263, 1589–1598.

    Article  ADS  CAS  Google Scholar 

  • Zhou R., Li Y., Li J. Q. and Liu N. F. 2012 Seasonal changes in the genetic diversity of two rodent populations, Midday Gerbil (Meriones meridianus) and Northern Three-Toed Jerboa (Dipus sagitta), Detected by ISSR. Biochem. Genet. 50, 350–371.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank the Director of Fisheries and Chief Projects Officer of Trout Fish Farming Project Kokernag, Department of Fisheries, Jammu and Kashmir; The Managing Director and Chairman of the High Range Angling Association of the KDHP Company, Munnar; The Director and the Additional Director of Fisheries of the Tamil Nadu Fisheries Department (No. 3790/F1/2019, dated 25/03/2019); The forest department along with Palani Hills Conservation Council, Kodaikanal for granting us permission to collect and for supplying us with rainbow trout fin samples for this research work. We sincerely thank Dr Karthikeyan, Dr Harshini and Ms. Hepzibah of Tamil Nadu Veterinary College, Chennai, for teaching us the statistical aspects. We also sincerely thank Mrs. Helen George Mary for language editing of this manuscript. The financial assistance by UGC-BSR of University Grants Commission, New Delhi (Award Letter No. F.5-67/2007(BSR)), is highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

WD carried out the entire field visit by collecting the trout samples from the geographical locations of south and north India and had formulated the manuscript and VP coordinated the experimental aspects. RU supervised the entire work in this manuscript.

Corresponding author

Correspondence to Ramesh Uthandakalaipandian.

Additional information

Corresponding editor: Punyasloke Bhadury

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devaa, W., Panneerselvam, V. & Uthandakalaipandian, R. Estimation of genetic diversity of the exotic Indian trout populations by using microsatellite markers. J Genet 103, 11 (2024). https://doi.org/10.1007/s12041-023-01462-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-023-01462-6

Keywords

Navigation