Skip to main content
Log in

EMX2OS targeting IGF2BP1 represses Wilms’ tumour stemness, epithelial–mesenchymal transition and metastasis

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Wilms’ tumour (WT) is the most typical type of renal tumour in children, which has a poor prognosis and high recurrence rate. This study explored whether lncRNA EMX2 opposite strand / antisense RNA (EMX2OS) modulated the stemness, epithelial–mesenchymal transition (EMT) and metastasis of WT cells through the interaction with insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). The expression levels of EMX2OS, IGF2BP1 and stem cell markers OCT4, Nanog, Sox2 and CD133 were detected by real time quantitative polymerase chain reaction (RT-qPCR). The stemness, migration and invasion of WT cells were determined by sphere formation assay, scratch and transwell assay, respectively. The levels of EMT-related proteins were detected by Western blotting. RNA pull down and RIP assays were utilized to validate the interaction between EMX2OS and IGF2BP1. The tumourigenicity of WT cells in vivo was analysed using a xenograft tumour assay. EMX2OS was downregulated in WT patients, while IGF2BP1 was upregulated. EMX2OS overexpression or IGF2BP1 knockdown suppressed WT cell sphere formation, migration and invasion. Moreover, EMX2OS could directly interact with RNA-binding protein IGF2BP1, and IGF2BP1 overexpression counteracted the inhibitory effect of EMX2OS on WT cell stemness, migration, invasion and EMT. The in vivo tumour growth, stemness and EMT were repressed by EMX2OS through the interaction with IGF2BP1. In conclusion, EMX2OS acted as a tumour suppressor for WT by interacting with IGF2BP1, which might be a novel target for WT diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Brok J., Pritchard-Jones K., Geller J. I. and Spreafico F. 2017 Review of phase I and II trials for Wilms’ tumour - Can we optimise the search for novel agents? Eur. J. Cancer. 79, 205–213.

    Article  CAS  Google Scholar 

  • Chen Z. H., Cui M. Y. and Zhang H. M. 2022 EMX2OS Delays Wilms’tumour progression via targeting miR-654-3p. Ann. Clin. Lab. Sci. 52, 12–20.

    CAS  Google Scholar 

  • Cone E. B., Dalton S. S., Van Noord M., Tracy E. T., Rice H. E. and Routh J. C. 2016 Biomarkers for Wilms tumour: A systematic review. J. Urol. 196, 1530–1535.

    Article  CAS  Google Scholar 

  • Ding Y., Li Y., Duan Y., Wang W., Zheng W., Cheng W. et al. 2022 LncRNA MBNL1-AS1 represses proliferation and cancer stem-like properties of breast cancer through MBNL1-AS1/ZFP36/CENPA axis. J. Oncol. 2022, 9999343.

    Article  Google Scholar 

  • Ehrlich P. F. 2007 Wilms tumour: progress and considerations for the surgeon. Surg. Oncol. 16, 157–171.

    Article  CAS  Google Scholar 

  • Elcheva I. A., Wood T., Chiarolanzio K., Chim B., Wong M., Singh V. et al. 2020 RNA-binding protein IGF2BP1 maintains leukemia stem cell properties by regulating HOXB4, MYB, and ALDH1A1. Leukemia 34, 1354–1363.

    Article  CAS  Google Scholar 

  • Gao Y., Ruan B., Liu W., Wang J., Yang X., Zhang Z. et al. 2015 Knockdown of CD44 inhibits the invasion and metastasis of hepatocellular carcinoma both in vitro and in vivo by reversing epithelial-mesenchymal transition. Oncotarget 6, 7828–7837.

    Article  Google Scholar 

  • Groenendijk A., Spreafico F., de Krijger R. R., Drost J., Brok J., Perotti D. et al. 2021 Prognostic factors for Wilms tumour recurrence: a review of the literature. Cancers (basel) 13, 3142.

    Article  CAS  Google Scholar 

  • Guo K., Gong W., Wang Q., Gu G., Zheng T., Li Y. et al. 2020 LINC01106 drives colorectal cancer growth and stemness through a positive feedback loop to regulate the Gli family factors. Cell Death Dis. 11, 869.

    Article  CAS  Google Scholar 

  • Hentze M. W., Castello A., Schwarzl T. and Preiss T. 2018 A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341.

    Article  CAS  Google Scholar 

  • Heydarnezhad Asl M., Pasban Khelejani F., Bahojb Mahdavi S. Z., Emrahi L., Jebelli A. and Mokhtarzadeh A. 2022 The various regulatory functions of long noncoding RNAs in apoptosis, cell cycle, and cellular senescence. J. Cell Biochem. 123, 995–1024.

    Article  CAS  Google Scholar 

  • Huang H., Wang D., Guo W., Zhuang X. and He Y. 2019 Correlated low IGF2BP1 and FOXM1 expression predicts a good prognosis in lung adenocarcinoma. Pathol. Res. Pract. 215, 152433.

    Article  CAS  Google Scholar 

  • Huang X., Zhang H., Guo X., Zhu Z., Cai H. and Kong X. 2018 Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J. Hematol. Oncol. 11, 88.

    Article  Google Scholar 

  • Li J., Mo M., Chen Z., Sheng Q., Mu H., Zhang F. et al. 2012 Adenoviral delivery of the EMX2 gene suppresses growth in human gastric cancer. PLoS ONE 7, e45970.

    Article  CAS  Google Scholar 

  • Li P., Zhang K., Tang S. and Tang W. 2022 Knockdown of lncRNA HAGLROS inhibits metastasis and promotes apoptosis in nephroblastoma cells by inhibition of autophagy. Bioengineered 13, 7552–7562.

    Article  CAS  Google Scholar 

  • Liu Y. C., Yeh C. T. and Lin K. H. 2020 Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells 9, 1331.

    Article  CAS  Google Scholar 

  • Mahaira L. G., Katsara O., Pappou E., Iliopoulou E. G., Fortis S., Antsaklis A. et al. 2014 IGF2BP1 expression in human mesenchymal stem cells significantly affects their proliferation and is under the epigenetic control of TET1/2 demethylases. Stem Cells Dev. 23, 2501–2512.

    Article  CAS  Google Scholar 

  • Muller S., Glass M., Singh A. K., Haase J., Bley N., Fuchs T. et al. 2019 IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 47, 375–390.

    Article  Google Scholar 

  • Noonan F. C., Goodfellow P. J., Staloch L. J., Mutch D. G. and Simon T. C. 2003 Antisense transcripts at the EMX2 locus in human and mouse. Genomics 81, 58–66.

    Article  CAS  Google Scholar 

  • Pan L., Li Y., Jin L., Li J. and Xu A. 2020 TRPM2-AS promotes cancer cell proliferation through control of TAF15. Int. J. Biochem. Cell. Biol. 120, 105683.

    Article  CAS  Google Scholar 

  • Pereira B., Billaud M. and Almeida R. 2017 RNA-binding proteins in cancer: old players and new actors. Trends Cancer 3, 506–528.

    Article  CAS  Google Scholar 

  • Qi C., Hu Y., Yang F., An H., Zhang J., Jin H. et al. 2016 Preliminary observations regarding the expression of collagen triple helix repeat-containing 1 is an independent prognostic factor for Wilms’ tumour. J. Pediatr. Surg. 51, 1501–1506.

    Article  Google Scholar 

  • Raggi C., Taddei M. L., Sacco E., Navari N., Correnti M., Piombanti B. et al. 2021 Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. J. Hepatol. 74, 1373–1385.

    Article  CAS  Google Scholar 

  • Spreafico F., Fernandez C. V., Brok J., Nakata K., Vujanic G., Geller J. I. et al. 2021 Wilms tumour. Nat. Rev. Dis. Primers 7, 75.

    Article  Google Scholar 

  • Wang Z., Zhang C., Chang J., Tian X., Zhu C. and Xu W. 2020 LncRNA EMX2OS, regulated by TCF12, interacts with FUS to regulate the proliferation, migration and invasion of prostate cancer cells through the cGMP-PKG signaling pathway. OncoTargets Ther. 13, 7045–7056.

    Article  CAS  Google Scholar 

  • Winkler L. and Dimitrova N. 2021 A mechanistic view of long noncoding RNAs in cancer. Wiley Interdiscip. Rev. RNA 13, e1699.

    Google Scholar 

  • Yang G., Lu X. and Yuan L. 2014 LncRNA: a link between RNA and cancer. Biochim. Biophys. Acta 1839, 1097–1109.

    Article  CAS  Google Scholar 

  • Yang Y., Wu J., Liu F., He J., Wu F., Chen J. et al. 2021 IGF2BP1 promotes the liver cancer stem cell phenotype by regulating MGAT5 mRNA stability by m6A RNA methylation. Stem Cells Dev. 30, 1115–1125.

    CAS  Google Scholar 

  • Zhao H., Wang P., Wang G., Zhang S. and Guo F. 2021 A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumour in children. Transl. Pediatr. 10, 525–540.

    Article  Google Scholar 

  • Zheng H., Li B. H., Liu C., Jia L. and Liu F. T. 2020 Comprehensive analysis of lncRNA-mediated ceRNA crosstalk and identification of prognostic biomarkers in Wilms’ tumour. Biomed. Res. Int. 2020, 4951692.

    Google Scholar 

  • Zheng Q., Jia J., Zhou Z., Chu Q., Lian W. and Chen Z. 2021 The emerging role of thymopoietin-antisense RNA 1 as long noncoding RNA in the pathogenesis of human cancers. DNA Cell Biol. 40, 848–857.

    Article  CAS  Google Scholar 

  • Zhu P., He F., Hou Y., Tu G., Li Q., Jin T. et al. 2021 A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene 40, 1609–1627.

    Article  CAS  Google Scholar 

  • Zou W., Zhang Y., Bai G., Zhuang J., Wei L., Wang Z. et al. 2022 siRNA-induced CD44 knockdown suppresses the proliferation and invasion of colorectal cancer stem cells through inhibiting epithelial-mesenchymal transition. J. Cell. Mol. Med. 26, 1969–1978.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hong Chen.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HM., Cui, MY. & Chen, ZH. EMX2OS targeting IGF2BP1 represses Wilms’ tumour stemness, epithelial–mesenchymal transition and metastasis. J Genet 102, 12 (2023). https://doi.org/10.1007/s12041-022-01411-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-022-01411-9

Keywords

Navigation