Skip to main content

Advertisement

Log in

Knockout of Cia5 gene using CRISPR/Cas9 technique in Chlamydomonas reinhardtii and evaluating CO2 sequestration in control and mutant isolates

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

CRISPR/Cas9 technology is one of the common methods of genome editing and targeted gene mutation, which has recently been used for manipulating microalgae such as Chlamydomonas reinhardtii. Besides, this technology can play a role in the fight against greenhouse gases (e.g., carbon dioxide) production by studying genetic pathways to improve algal strains. Among several genes in algae that respond to CO2 and regulators control the expression of each; Cia5 is one of the most critical transcriptional regulators. In this research, we knocked out the Cia5 gene using the CRISPR/Cas9 technique and analysed the ability of C. reinhardtii to perform CO2 sequestration. Our results showed that C. reinhardtii has better performance (i.e., response to CO2 treatment) in both control and mutant species at 0.5% CO2 concentration than other concentrations. However, the difference between the control microalgae species and the mutant species was in the CO2 removal efficiency. Additionally, our findings revealed that the control type isolate in CO2 concentrations of 0.04%, 0.5% and 1% had removal efficiencies of 27%, 37% and 21%, respectively. Nevertheless, for mutant species in the same concentrations, the observed removal efficiencies were 16%, 23% and 9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Baek K., Kim D. H., Jeong J., Sim S. J., Melis A., Kim J. S. and Bae S. 2016 DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6, 1–7.

    Article  Google Scholar 

  • Banerjee A., Banerjee C., Negi S., Chang J. S. and Shukla P. 2018 Improvements in algal lipid production: a systems biology and gene editing approach. Cri. Rev. Biotech. 38, 369–385.

    Article  CAS  Google Scholar 

  • Banerjee S., Ray A. and Das D. 2021 Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework. Sci. Total Environ. 762, 143080.

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R. and Marraffini L. A. 2014 CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol. Cell. 54, 234–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S., Roy A. S., Mohanty K. and Ghoshal A. K. 2014 CO2 biofixation and carbonic anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system. Biores. Technol. 164, 323–330.

    Article  CAS  Google Scholar 

  • Cerutti H., Ma X., Msanne J. and Repas T. 2011 RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Euk. Cell. 10, 1164–1172.

    Article  CAS  Google Scholar 

  • Chen B. 2016 The function and regulation of CIA5/CCM1 in Chlamydomonas reinhardtii. Ph.D. thesis, Iowa State University, USA.

  • Chen B., Lee K., Plucinak T., Duanmu D., Wang Y., Horken K. M. et al. 2017 A novel activation domain is essential for CIA5-mediated gene regulation in response to CO2 changes in Chlamydomonas reinhardtii. Algal. Res. 24, 207–217.

    Article  Google Scholar 

  • Daryayehsalameh B., Nabavi M. and Vaferi B. 2021 Modeling of CO2 capture ability of [Bmim][BF4] ionic liquid using connectionist smart paradigms. Environ. Technol. Innov. 22, 101484.

    Article  CAS  Google Scholar 

  • Davahli M. R., Karwowski W. and Taiar R. 2020 A system dynamics simulation applied to healthcare: a systematic review. Int. J. Environ. Res. Public Health 17, 5741.

    Article  PubMed Central  Google Scholar 

  • De Morais M. G. and Costa J. A. 2007 Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotech. 129, 439–445.

    Article  Google Scholar 

  • Earth System Research Laboratory 2020 Trends in atmospheric carbon dioxide (https://www.esrl.noaa.gov/gmd/ccgg/trends/).

  • Fan J., Xu H. and Li Y. 2016 Transcriptome-based global analysis of gene expression in response to carbon dioxide deprivation in the green algae Chlorella pyrenoidosa. Algal Res. 16, 12–19.

    Article  Google Scholar 

  • Fang W., Si Y., Douglass S., Casero D., Merchant S. S., Pellegrini M. et al. 2012 Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24, 1876–1893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farcas M. T., Sexstone A., Bissonnette G. and Jaczynski J. 2012 Growth of Chlorella vulgaris and Chlamydomonas reinhardtii for biodiesel production and carbon dioxide capture. Ph.D. thesis, West Virginia University, USA.

  • Fukuzawa H., Miura K., Ishizaki K., Kucho K. I., Saito T., Kohinata T. and Ohyama K. 2001 Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc. Natl. Aca. Sci. USA 98, 5347–5352.

    Article  CAS  Google Scholar 

  • Gao Y. and Zhao Y. 2014 Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integrative Plant. Biol. 56, 343–349.

    Article  CAS  Google Scholar 

  • Greiner A., Kelterborn S., Evers H., Kreimer G., Sizova I. and Hegemann P. 2017 Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29, 2498–2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Zapata D., Sandoval-Vargas J. M., Macedo-Osorio K. S., Salgado-Manjarrez E., Castrejón-Flores J. L., Oliver-Salvador M. C. et al. 2019 Efficient editing of the nuclear APT reporter gene in Chlamydomonas reinhardtii via expression of a CRISPR-Cas9 Module. Int. J. Mol. Sci. 20, 1247.

    Article  CAS  PubMed Central  Google Scholar 

  • Hankamer B., Lehr F., Rupprecht J., Mussgnug J. H., Posten C. and Kruse O. 2007 Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol. Planta 131, 10–21.

    Article  CAS  Google Scholar 

  • Hickey R. D., Lillegard J. B., Fisher J. E., McKenzie T. J., Hofherr S. E. et al. 2011 Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer. Hepatology 54, 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  • Hiruta C., Kakui K., Tollefsen K. E. and Iguchi T. 2018 Targeted gene disruption by use of CRISPR/Cas9 ribonucleoprotein complexes in the water flea Daphnia pulex. Gen. Cell 23, 494–502.

    Article  CAS  Google Scholar 

  • Im C. S. and Grossman A. R. 2002 Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. Plant. J. 30, 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Jacob-Lopes E., Lacerda L. M. and Franco T. T. 2008 Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochem. Eng. J. 40, 27–34.

    Article  CAS  Google Scholar 

  • Ma X., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R. et al. 2015 A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274–1284.

    Article  CAS  PubMed  Google Scholar 

  • Manghwar H., Li B., Ding X., Hussain A., Lindsey K., Zhang X. and Jin S. 2020 CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv. Sci. 7, 1902312.

    Article  CAS  Google Scholar 

  • Mehta K., Jaiswal D., Nayak M., Prasannan C. B., Wangikar P. P. and Srivastava S. 2019 Elevated carbon dioxide levels lead to proteome-wide alterations for optimal growth of a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. Sci. Rep. 9, 1–14.

    Article  CAS  Google Scholar 

  • Molazadeh M., Ahmadzadeh H., Pourianfar H. R., Lyon S. and Rampelotto P. H. 2019 The use of microalgae for coupling wastewater treatment with CO2 biofixation. Fron. Bioeng. Biotech. 7, 42.

    Article  Google Scholar 

  • Moreb E. A., Hutmacher M. and Lynch M. D. 2020 CRISPR-Cas “Non-Target” sites inhibit on-target cutting rates. CRISPR. J. 3, 550–561.

    Article  CAS  PubMed  Google Scholar 

  • Mortensen L. M. and Gislerod H. R. 2015 The growth of Chlamydomonas reinhardtii as influenced by high CO2 and low O2 in flue gas from a silico manganese smelter. J. Appl. Phycol. 27, 633–638.

    Article  CAS  PubMed  Google Scholar 

  • Owen J. R., Hennig S. L., McNabb B. R., Mansour T. A., Smith J. M. et al. 2021 One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. BMC Gen. 22, 1–11.

    Article  Google Scholar 

  • Pianko-Oprych P., Hosseini S. M. and Jaworski Z. 2016 Model development of integrated CPOx reformer and SOFC stack system. Polish. J. Chem. Tech. 18, 41–46.

    Article  CAS  Google Scholar 

  • Pollock S. V., Colombo S. L., Prout D. L., Godfrey A. C. and Moroney J. V. 2003 Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO2 atmosphere. Plant. Phys. 133, 1854–1861.

    Article  CAS  Google Scholar 

  • Rath D., Amlinger L., Rath A. and Lundgren M. 2015 The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117, 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Santiago Y., Chan E., Liu P. Q., Orlando S., Zhang L., Urnov F. D. et al. 2008 Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 105, 5809–5814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serif M., Lepetit B., Weibert K., Kroth P. G. and Bartulos C. R. 2017 A fast and reliable strategy to generate TALEN-mediated gene knockouts in the diatom Phaeodactylum tricornutum. Algal. Res. 23, 186–195.

    Article  Google Scholar 

  • Sharma A. K., Nymark M., Flo S., Sparstad T., Bones A. M. and Winge P. 2021 Simultaneous knock‐out of multiple LHCF genes using single sgRNAs and engineering of a high fidelity Cas9 for precise genome editing in marine algae. Plant Biotech. J. 1-12.

  • Shin S. E., Lim J. M., Koh H. G., Kim E. K., Kang N. K. et al. 2016 CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. 6, 1–15.

    Article  Google Scholar 

  • Singh S. P., Rastogi R. P., Häder D. P. and Sinha R. P. 2011 An improved method for genomic DNA extraction from cyanobacteria. World. J. Microbiol. Biotech. 27, 1225–1230.

    Article  CAS  Google Scholar 

  • Singh S. P. and Singh P. 2014 Effect of CO2 concentration on algal growth: a review. Renew. Sustain. Ene. Rev. 38, 172–179.

    Article  CAS  Google Scholar 

  • Sizova I., Greiner A., Awasthi M., Kateriya S. and Hegemann P. 2013 Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant. J. 73, 873–882.

    Article  CAS  PubMed  Google Scholar 

  • Swarnalatha G. V., Hegde N. S., Chauhan V. S. and Sarada R. 2015 The effect of carbon dioxide rich environment on carbonic anhydrase activity, growth and metabolite production in indigenous freshwater microalgae. Algal Res. 9, 151–159.

    Article  Google Scholar 

  • Taher H., Al-Zuhair S., Al-Marzouqi A. H., Haik Y. and Farid M. 2014 Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass. Bioen. 66, 159–167.

    Article  CAS  Google Scholar 

  • Wang Y., Sun Z., Horken K. M., Im C. S., Xiang Y., Grossman A. R. et al. 2005 Analyses of CIA5, the master regulator of the carbon-concentrating mechanism in Chlamydomonas reinhardtii, and its control of gene expression. Canadian. J. Bot. 83, 765–779.

    Article  CAS  Google Scholar 

  • Xiang Y., Zhang J. and Weeks D. P. 2001 The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 98, 5341–5346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Authors acknowledge Dr Bagheri Bajestaani (Technical and Vocational University, Damghan, Iran) who provided C. reinhardtii used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MEHRDAD ASADIAN.

Additional information

Corresponding editor: Manoj Prasad

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ASADIAN, M., SAADATI, M., BAJESTANI, F.B. et al. Knockout of Cia5 gene using CRISPR/Cas9 technique in Chlamydomonas reinhardtii and evaluating CO2 sequestration in control and mutant isolates. J Genet 101, 6 (2022). https://doi.org/10.1007/s12041-021-01350-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01350-x

Keywords

Navigation