Skip to main content

Advertisement

Log in

Genetic diversity, population structure and relationship of Ethiopian barley (Hordeum vulgare L.) landraces as revealed by SSR markers

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Evaluation and characterization of genetic resources maintained at both in situ and ex situ GenBanks have important implications for future utilization in association mapping studies, genetic selection, breeding and conservation activities. The main objective of this study was to evaluate the genetic diversity, population structure and relationship of 384 Ethiopian barley genotypes collected from different barley growing regions of Ethiopia using 49 simple sequence repeat (SSR) markers. Analysis of these 49 SSR markers amplified a total of 478 alleles with an average of 9.755 alleles per locus were obtained of which 97.07% of the loci were observed to be polymorphic. Nei’s genetic diversity index (h) was 0.654 and the Shannon diversity index (I) was 0.647, indicating that the genetic diversity in barley genotypes studied was moderately high. At the population level, mean per cent of polymorphic loci (PPL) showed 98.37%, h = 0.388 and I = 0.568. Highest level of genetic diversity was observed in the Arsi population (with PPL = 100%, h = 0.439, I = 0.624); the lowest value observed was in population from Jimma (with PPL = 75.51%, h = 0.291, I = 0.430). Analysis of molecular variance (AMOVA) result showed significant genetic differentiation within and between populations (P < 0.001), with 84.21% and 15.79% of the variation occurring within and among populations, respectively. Further, genetic variation analysis showed a coefficient of gene differentiation of 0.053 and a gene flow value of 4.467 among populations. The 384 barley genotypes were divided into seven genetic clusters according to STRUCTURE, neighbour-joining tree and principal coordinate analysis, correlating significantly with geographic distribution. These results signified presence of significant variations within and among populations (P < 0.001), with the highest of the variation occurring within populations. The results will also assist with the design of conservation strategies, such as genetic protection via both in situ and ex situ conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abay F., Bjørnstad A. and Smale M. 2009 Measuring on farm diversity and determinants of barley diversity in Tigray: Northern Ethiopia. Momona Ethiopian J. Sci. 1, 44–66.

    Google Scholar 

  • Abebe T. D., Bauer A. M. and Léon J. 2010 Morphological diversity of Ethiopian barleys (Hordeum vulgare L.) in relation to geographic regions and altitudes. Hereditas 147, 154–164.

    PubMed  Google Scholar 

  • Abraha A., Uhlen A. K., Abay F., Stefan S. and Asmund B. 2013 Genetic variation in barley enables a high quality injera, the Ethiopian staple flat bread, comparable to tef. Crop Sci. 53, 2040–2050.

    Google Scholar 

  • Alam A. K. M. M., Begum M., Chaudhury M. J. A., Naher N. and Gomes R. 2007 D2 analysis in early maturity hull-less barley (Hordeum vulgare L.). Int. J. Sustain. Crop Prod. 2, 15–17

    Google Scholar 

  • Amanda B. 2008 The biology of Hordeum vulgare L. (Barley). Second edition, The University of Adelaide, Australia.

  • Arabi M. L., Sarrafi A., Barrault G. and Albertini L. 1990 Inheritance of partial resistance to net blotch in barley. Plant Breed. 105, 150–155.

    Google Scholar 

  • Asfaw Z. 1989a Relationships between spike morphology, hordein and altitude within Ethiopian barley, Hordeum vulgare (Poaceae). Hereditas 110, 203–209.

    Google Scholar 

  • Asfaw Z. 1989b Variation in hordein polypeptide pattern within Ethiopian barley, Hordeum vulgare L. (Poaceae). Hereditas 110, 185–191.

    Google Scholar 

  • Assefa A. 2005 Biochemical and morphological variation among barley landraces. Afr. Crop Sci. J. 13, 227–238.

    Google Scholar 

  • Badiane F. A., Gowda B. S., Cissé N., Diouf D., Sadio O. and Timko M. P. 2012 Genetic relationship of cowpea (Vigna unguiculata) varieties from Senegal based on SSR markers. Genet. Mol. Res. 11, 292–304.

    CAS  PubMed  Google Scholar 

  • Barkley N. A., Dean R. E., Pittman R. N., Wang M. L., Holbrook C. C. and Pederson G. A. 2007 Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing. Genet. Res. 89, 93–106.

    CAS  PubMed  Google Scholar 

  • Becker J. and Heun M. 1995 Barley microsatellites: allele variation and mapping. Plant Mol. Biol. 27, 835–845.

    CAS  PubMed  Google Scholar 

  • Bekele E. 1983a A differential rate of regional distribution of barley flavonoid patterns in Ethiopia, and a view on the center of origin of barley. Hereditas 98, 269–280.

    CAS  PubMed  Google Scholar 

  • Bekele E. 1983b Allozyme genotypic composition and genetic distance between the Ethiopian landrace populations of barley. Hereditas 98, 259–267.

    CAS  PubMed  Google Scholar 

  • Bekele E. 1984 Relationships between morphological variance, gene diversity and flavonoid patterns in the landrace populations of Ethiopian barley. Hereditas 100, 271–294.

    Google Scholar 

  • Bekele B., Fekadu A. and Lakew B. 2005 Food barley in Ethiopia. In Food barley: importance, uses and local knowledge, (ed. S. Grando and H. G. Macpherson.), pp. 53–83. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo.

  • Bellucci E., Bitocchi E., Rau D., Nanni L., Ferradini N., Giarini A. et al. 2013 Population structure of barley landrace populations and gene flow with modern varieties. PLoS One 8, e83891.

    PubMed  PubMed Central  Google Scholar 

  • Botstein D., White R. L., Skalnick M. H. and Davis R. W. 1980 Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet. 32, 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao S., Dubcovsky J., Dvorak J., Luo M. C., Baenziger S. P., Matnyazov R. et al. 2010 Population and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom. 11, 727.

    CAS  Google Scholar 

  • Che Y. H., Li H. J., Yang Y. P. and Yang X. M. 2008 On the use of SSR markers for the genetic characterization of the Agropyron cristatum (L.) Gaertn. in Northern China. Genet. Resour. Crop Evol. 55, 389–396.

    Google Scholar 

  • Chen Z. W., Lu R. J., Zou L., Du Z. Z., Gao R. H., He T. et al. 2012 Genetic diversity analysis of barley landraces and cultivars in the Shanghai region of China. Genet. Mole. Res. 11, 644–650.

    CAS  Google Scholar 

  • Chen R., Shimono A., Aono M., Nakajima N., Ohsawa R. and Yoshioka Y. 2020 Genetic diversity and population structure of feral rapeseed (Brassica napus L.) in Japan. PLoS One 15, e0227990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demissie A. and Bjornstad A. 1997 Geographical, altitude and agro-ecological differentiation of isozyme and hordein genotypes of landrace barleys from Ethiopia: implication to germplasm and conservation. Genet. Resour. Crop Evol. 44, 43–55.

    Google Scholar 

  • Demissie A., Bjornstad A. and Kleinhofs A. 1998 Restriction fragment length polymorphisms in landraces from Ethiopia in relation to geographic, altitude, and agro-ecological factors. Crop Sci. 38, 237–243.

    Google Scholar 

  • Desmae H., Jordan D. R. and Godwin I. D. 2016 DNA markers reveal genetic structure and localized diversity of Ethiopian sorghum landraces. Afr. J. Biotech. 15, 2301–2311.

    CAS  Google Scholar 

  • Dido A. A., Degefu D. T., Singh B. J. K., Kassahun T. and Krishna M. S. R. 2020a Multivariate analysis of quantitative characters variability in Ethiopian barley (Hordeum vulgare L.) landrace: based on regions and altitude. Genetika 52, 597–620.

    Google Scholar 

  • Dido A. A., Singh B. J. K., Krishna M. S. R., Kassahun T. and Dawit D. 2020b Variability analysis for qualitative characters in Ethiopian barley (H. vulgare L.) landraces. Res. Crops 21, 355–363.

    Google Scholar 

  • Dido A. A., Dawit T. D., Krishna M. S. R., Singh B. J. K. and Kassahun T. 2020c Agro-morphological variability and characters association in barley (H. vulgare L.) landraces differing for maturity Period. Res. Crops 21, 36–45.

    Google Scholar 

  • Dido A. A., Krishna M. S. R., Singh B. J. K., Kassahun T. and Dawit D. 2020d Assessment of variability of yield affecting metric characters in barley (Hordeum vulgare) landraces. Res. Crops 21, 587–594.

    Google Scholar 

  • Dido A. A., Singh B. J. K., Degefu D. T., Kassahun T. and Krishna M. S. R. 2020e Diversity and resistance components analysis of barley landraces to barley shoot fly (Delia flavibasis). J. Plant Dis. Prot., https://doi.org/10.1007/s41348-020-00364-4.

    Article  Google Scholar 

  • Dido A.A., Krishna, M.S.R., Singh, B.J.K., Kassahun T. and Dawit D. 2021a Study on variability in resistance to barley yellow dwarf virus (BYDV-PAV) among Ethiopian barley (H. vulgare L.) landraces. Indian Phytopathol. https://doi.org/10.1007/s42360-020-00296-x.

    Article  Google Scholar 

  • Dido A.A., Kassahun T., Krishna, M.S.R., Dawit T.D. and Singh B.J.K. 2021b Diversity within and among Ethiopian barley (H. vulgare L.) landraces in resistance to barley net blotch (Pyrenophora teres F. teres (Ptt)). Aust. Plant Pathol. https://doi.org/10.1007/s13313-020-00764-y.

  • Earl D. A. and vonHoldt B. M. 2012 STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361.

    Google Scholar 

  • Edwards M. C., Bragg J. and Jackson A. O. 2006 Natural resistance mechanisms to viruses in barley. In Natural resistance mechanisms of plants to viruses (ed. C. Lobenstein and J. P. Carr), pp. 465–501, Springer, New York.

    Google Scholar 

  • El-Esawi M. A., Germaine K., Bourke P. and Malone R. 2016 Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers. Comptes Rendus Biol. 339, 3–4.

    Google Scholar 

  • Eleuch L., Jilal A., Grando S., Ceccarelli S., Schmising M. K., Tsujimoto H. et al. 2008 Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. J. Integr. Plant Biol. 50, 1004–1014.

    CAS  PubMed  Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.

    CAS  PubMed  Google Scholar 

  • Falush D., Stephens M. and Pritchard J. K. 2003 Inference of population structure using multilocus genotype gata: Linked loci and correlated cllele Frequencies. Genetics 164, 1567–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuyama T. and Takeda H. 1992 Survey of resistance to Scald in world collection of barley. Jpn. J. Breed 42, 761–168.

    Google Scholar 

  • Graner A., Jahoor A., Schondelmaier J., Siedler H., Pillen K., Fischbeck G. et al. 1991 Construction of an RFLP map of barley. Theor. Appl. Genet. 83, 250–256.

    CAS  PubMed  Google Scholar 

  • Guo X. M., Gao A. N., Liu W. H., Yang X., Li X. and Li L. 2011 Evaluation of genetic diversity, population structure, and linkage disequilibrium among elite Chinese wheat (Triticum aestivum L.) cultivars. Aust. J. Crop Sci. 15, 1167–1172.

    Google Scholar 

  • Gupta P. K. and Varshney R. K. 2000 The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113, 163–185.

    Article  CAS  Google Scholar 

  • Hadado T. T., Rau D., Bitocchi E. and Papa R. 2009 Genetic Diversity of barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia: comparison between the Belg and Meher growing seasons using morphological traits. Genet. Resour. Crop Evol. 56, 1131–1148.

    Google Scholar 

  • Hadado T. T., Rau D., Bitocchi E. and Papa R. 2010 Adaptation and diversity along an altitudinal gradient in Ethiopian barley (H. vulgare L.) landraces revealed by molecular analysis. BMC Plant Biol. 10, 121.

    Google Scholar 

  • Harlan J. R. 1969 Ethiopia: A center of diversity. Econ. Bot. 23, 309–314.

    Google Scholar 

  • Hearnden P. R., Eckermann P. J., McMichael G. L., Hayden M. J., Eglinton J. K. and Chalmers K. J. 2007 A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor. Appl. Genet. 115, 383.

    CAS  PubMed  Google Scholar 

  • Hong Y., Chen X., Liang X., Liu H., Zhou G., Li S. et al. 2010 A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol. 10, 17.

    PubMed  PubMed Central  Google Scholar 

  • Jakobsson M. and Rosenberg N. 2007 CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806.

    CAS  PubMed  Google Scholar 

  • Jilal A., Grando S., Henry R. J. and Lee L. S. 2008 Genetic diversity of ICARDA’s worldwide barley landrace collection. Genet Resour Crop Evol. 55, 1221–1230.

    CAS  Google Scholar 

  • Jombart T., Devillard S. and Balloux F. 2010 Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94.

    PubMed  PubMed Central  Google Scholar 

  • Jorgensen J. H. 1992 Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63, 141–152.

    Google Scholar 

  • Kandemir N., Yildirim A. and Gündüz R. 2010 Determining the levels of genetic variation using SSR markers in three Turkish barley materials known as Tokak. Turk. J. Agric. for. 34, 17–23.

    CAS  Google Scholar 

  • Kamvar Z. N., Tabima J. F. and Grünwald N. J. 2014 Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281.

    PubMed  PubMed Central  Google Scholar 

  • Karakousis A., Gustafson J. P., Chalmers K. J., Barr A. R. and Langridge P. 2003 A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res. 54, 1173–1185.

    CAS  Google Scholar 

  • Karp A. and Edwards K.J. 1995 Molecular techniques in the analysis of the extent and distribution of genetic diversity. IPGRI Workshop on Molecular Genetic Tools in Plant Genetic Resources, 9–11 October, Rome, IPGRI.

  • Keenan K., McGinnity P., Cross T. T., Crozier W. W. and Prodohl P. A. 2013 Diversity: an R package for the estimation and exploration of popuation genetics parameters and their associated errors. Method Ecol. Evol. 4, 782–788.

    Google Scholar 

  • Kefayati S., Ikhsan A. S., Sutyemez M., Paizila A., Topcu H., Bukucu S. et al. 2019 First simple sequence repeat-based genetic linkage map reveals a major QTL for leafing time in walnut (Juglans regia L.). Tree Genet. Genomes 15, 13.

    Google Scholar 

  • Ketema S., Tesfaye B., Keneni G., Fenta B. A., Assefa E., Greliche N. et al. 2020 DArTSeq SNP-based markers revealed high genetic diversity and structured population in Ethiopian cowpea (Vigna unguiculata L. Walp) germplasms. PLoS One 15, e0239122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S. M., Hashimi M., Khan K. U. and Khan M. A. 2012 Barley (Hordeum vulgare L.) a prophetic food mentioned in ahadith and its ethnobotanical importance. American-Eurasian J. Agric. Environ. Sci. 12, 835–841.

    Google Scholar 

  • Kleinhofs A., Kilian A., Saghai Maroof M. A., Biyashev R. M., Hayes P., Chen F. Q. et al. 1993 A molecular, isozyme and morphological map of the barley (H. vulgare) genome. Theor. Appl. Genet. 86, 705–712.

    CAS  PubMed  Google Scholar 

  • Lakew B., Semeane T., Alemayehu F., Gebre H., Grando S., van Leur J. A. G. et al. 1997 Exploiting the diversity of barley landraces in Ethiopia. Genet. Resour. Crop Evol. 44, 109–116.

    Google Scholar 

  • Li R. Y., Zhang H., Zhou X., Guan Y., Yao F., Song G. et al. 2010 Genetic diversity in Chinese sorghum landraces revealed by chloroplast simple sequence repeats. Genet. Resour. Crop Evol. 57, 1–15.

    Google Scholar 

  • Liu K. and Muse S. V. 2005 PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129.

    CAS  PubMed  Google Scholar 

  • Macaulay M., Ramsay L., Powell W. and Waugh R. 2001 A representative, highly informative ‘genotyping set’ of barley SSRs. Theor. Appl. Genet. 102, 801–809.

    CAS  Google Scholar 

  • Malysheva-Otto L. V., Ganal M. W. and Röder M. S. 2006 Analysis of molecular diversity, population structure and linkage disequilibrium in worldwide cultivated barley germplasm (Hordeum vulgare L.). BMC Genet. 7, 6.

    PubMed  PubMed Central  Google Scholar 

  • Marcel T. C., Varshney R. K., Barbieri M., Jafary H., de Kock M. J. D., Graner A. et al. 2007 A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defense gene homologues. Theor. Appl. Genet. 114, 487–500.

    CAS  PubMed  Google Scholar 

  • Maroof S. M., Biyashev R. M., Yang G. P., Zhang Q., and Allard R. W. 1994 Extraordinarily polymorphic microsatellite DNA in barley : species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91, 5466–5470.

    CAS  Google Scholar 

  • Matus I. A. and Hayes P. M. 2002 Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45, 1095–1106.

    CAS  PubMed  Google Scholar 

  • Megersa G., Tesfaye K., Getnet M. and Tana T. 2019 Rainfall Variability and its implications for wheat and barley production in Central Ethiopia. Ethiopian J Crop Sci. 7, 89–111.

    Google Scholar 

  • Molina-Cano J. L., Russell J. R., Moralejo M. A., Escacena J. L. and Powell W. 2005 Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor. Appl. Genet. 110, 613–619.

    CAS  PubMed  Google Scholar 

  • Naeem R., Dahleen L. and Mirza B. 2011 Genetic differentiation and geographical relationship of Asian barley landraces using SSRs. Genet. Mol. Biol. 34, 268–273.

    PubMed  PubMed Central  Google Scholar 

  • Nei M. 1973 Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321–3323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo E. 2006 Genome evolution of wild cereal diversity and prospects for crop improvement. Plant Genet. Resour. 36–46.

  • Nielsen N. H., Backes G., Stougaard J., Andersen S. U. and Jahoor A. 2014 Genetic diversity and population structure analysis of european hexaploid bread wheat (Triticum aestivum L.) Varieties. PLoS One 9, e94000.

    PubMed  PubMed Central  Google Scholar 

  • Niks R. E., Habekub A., Bekele B. and Ordon F. 2004 A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus. Theor. Appl. Genet. 109, 1536–1543.

    CAS  PubMed  Google Scholar 

  • Orabi J., Backes G., Wolday A., Yahyaoui A. and Jahoor A. 2007 The Horn of Africa as a centre of barley diversification and a potential domestication site. Theor. Appl. Genet. 114, 1117–1127.

    CAS  PubMed  Google Scholar 

  • Orabi J., Ahmed J. and Gunter B. 2014 Changes in allelic frequency over time in European bread wheat (Triticum aestivum L.) varieties revealed using DArT and SSR markers. Euphytica, https://doi.org/10.1007/s10681-014-1080-x.

    Article  Google Scholar 

  • Ould Med Mahmouda M. and Hamzaa S. 2009 Genetic diversity in local barley accessions collected from different geographical regions of Tunisia. Plant Genet. Resour. 7, 169–176.

    Google Scholar 

  • Pandey M., Wagner C., Friedt W. and Ordon F. 2006 Genetic relatedness and population differentiation of Himalayan hulless barley (Hordeum vulgare L.) landraces inferred with SSR. Theor. Appl. Genet. 113, 715–729.

    CAS  PubMed  Google Scholar 

  • Pasam R. K., Sharma R., Walther A., Ozkan H., Graner A. and Kilian B. 2014 Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates. PLoS One 9, e116164.

    PubMed  PubMed Central  Google Scholar 

  • Peakall R. and Smouse P. E. 2012 GeneAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research ± an update. Bioinformatics 25, 2537–2539.

    Google Scholar 

  • Powell W., Machray G. C. and Provan J. 1996 Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1, 215–221.

    Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay L., Macaulay M., degli Ivanissevich S., MacLean K., Cardle L., Fuller J. et al. 2000 A simple sequence repeat-based linkage map of barley. Genetics 156, 1997–2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X., Jiang H., Yan Z., Chen Y., Zhou X., Huang L. et al. 2014 Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS One 9, e88091.

    PubMed  PubMed Central  Google Scholar 

  • Rosenberg N. A. 2004 DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Resour. 4, 137–138.

    Google Scholar 

  • Rousset F. 2008 Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106.

    PubMed  Google Scholar 

  • Seboka B. and van Hintum T. 2006 The dynamics of on-farm management of sorghum in Ethiopia: Implication for the conservation and improvement of plant genetic resources. Genet. Resour. Crop Evol. 53, 1385–1403.

    Google Scholar 

  • Shewayrga H. and Sopade P. A. 2011 Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands. J. Ethnobiol. Ethnomed. 7, 1–15.

    Google Scholar 

  • Shiferaw E., Pe M. E., Porceddu E. and Ponnaiah M. 2012 Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L) using EST-SSR markers. Mol. Breed, https://doi.org/10.1007/s11032-011-9662-y.

    Article  PubMed  Google Scholar 

  • Song Q. J., Shi J. R., Singh S., Fickus E. W., Costa J. M., Lewis J. et al. 2005 Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet. 110, 550–560.

    CAS  PubMed  Google Scholar 

  • Struss D. and Plieske J. 1998 The use of microsatellite markers for detection of genetic diversity in barley populations. Theor. Appl. Genet. 97, 308–315.

    CAS  Google Scholar 

  • Tara S. C., Bhat K. V., Bharadwaj C. and Tiwari S. P. 2006 AFLP analysis of genetic diversity in Indian soybean (Glycine max (L.) Merr.) varieties. Genet. Resour. Crop Evol. 53, 1069–1079.

    Google Scholar 

  • Tascioglu T., Metin O. K., Aydin Y., Sakiroglu M., Akan K. and Uncuoglu A. A. 2016 Genetic diversity, population structure and linkage disequilibrium in bread wheat (Triticum aestivum). Biochem. Genet. 54, 421–437.

    CAS  PubMed  Google Scholar 

  • Taye M., Simane B., Benjamin F. Z., Selassie Y. and Setegn S. 2019 Rainfall variability across the agro-climatic zones of a tropical highland: the case of the Jema Watershed, northwestern Ethiopia. Environments 6, 5, https://doi.org/10.3390/environments6110118.

    Article  Google Scholar 

  • Teshome A., Baum B. R., Fahrig L., Torance J. K., Arnason T. J. and Lambert J. D. 1997 Sorghum (sorghum bicolor (L.) Moench) landrace variation and classification in North Shewa and South Welo, Ethiopia. Euphytica 97, 255–263.

    Google Scholar 

  • Tolbert D. M., Qualset C. O., Jain S. K. and Craddock J. C. 1979 A diversity analysis of a world collection of barley. Crop Sci. 19, 789–794.

    Google Scholar 

  • Tóth G., Gáspári Z. and Jurka J. 2000 Microsatellites in different Eukaryotic genomes: Survey and analysis. Genome Res. 10, 967–981.

    PubMed  PubMed Central  Google Scholar 

  • van Leur J. and Gebre G. 2003 Diversity between some Ethiopian farmers’ varieties of barley and within these varieties among seed sources. Genet. Resour. Crop Evol. 50, 351–357.

    Google Scholar 

  • Varshney R. K., Zhang H., Potokina E., Stein N., Langridge P. and Graner A. 2004 A simple hybridization-based strategy for the generation of non-redundant EST collections—A case study in barley (Hordeum vulgare L.). Plant Sci. 167, 629–634.

    CAS  Google Scholar 

  • Varshney R. K., Graner A. and Sorrells M. E. 2005 Genic microsatellite markers in plants: Features and applications. Trends Biotech. 23, 48–55.

    CAS  Google Scholar 

  • Varshney R. K., Marcel T. C., Ramsay L., Russel J., Roder M. S., Stein N. et al. 2007 A high density barley microsatellite consensus map with 775 SSR loci. Theor. Appl. Genet. 114, 1091–1103.

    CAS  PubMed  Google Scholar 

  • Varshney R. K., Bertioli D. J., Moretzsohn M. C., Vadez V., Krishnamurthy L., Aruna R. et al. 2009 The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor. Appl. Genet. 118, 729–739.

    CAS  PubMed  Google Scholar 

  • Vavilov N. I. 1951 The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 1, 364.

    Google Scholar 

  • von Bothmer R., Sato K., Knupffer H. and van Hintum T. J. L. 2003 Barley diversity: an introduction. In Diversity in Barley (Hordeum vulgare L.). (ed. von Bothmer R, van Hintum T, Knupfer H and Sato K), pp. 3–8. Elsevier, Sydney.

  • Wang L., Guan R., Zhangxiong L. and Chang R. 2006 Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci. 46, 1032–1038.

    Google Scholar 

  • Wang J., Yang J., Zhu J., Jia Q. and Tao Y. 2010 Assessment of genetic diversity by simple sequence repeats markers among forty elite varieties in the germplasm for malting barley breeding. J. Zhejiang Univ. Sci. B 11, 792–800.

    PubMed  PubMed Central  Google Scholar 

  • Wang Ch., Jia G., Zhi H., Niu Z., Chai Y., Li W. et al. 2012 Genetic diversity and population structure of Chinese foxtail millet (Setaria italica (L.) Beauv.) landraces. G3 2, 769–777.

  • Wen Z., Ding Y., Zhao T. and Gai J. 2009 Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor Appl Genet 119, 371–381.

    CAS  PubMed  Google Scholar 

  • Woldeab G., Fininsa C., Singh H., Yuen J. and Crossa J. 2007 Variation in partial resistance to barley leaf rust (Puccinia hordei) and agronomic characters of Ethiopian landrace lines. Euphytica 158, 139–151.

    Google Scholar 

  • Wright S. 1931 Evolution in Mendelian populations. Genetics 16, 97–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S. 1951 The genetic structure of populations. Annu. Eug. 15, 323–354.

    CAS  Google Scholar 

  • Yang M., Wang G., Ahmed K.F., Adugna B., Egen M., Atsbeha E., et al. 2020 The role of climate in the trend and variability of Ethiopia's cereal crop yields. Science of the Total Environment 723.

  • Ya N., Raveendar S., Bayarsukh N., Ya M., Lee J. R., Lee K. et al. 2017 Genetic diversity and population structure of Mongolian wheat based on SSR markers: implications for conservation and management. Plant Breed Biotech. 5, 213–220.

    Google Scholar 

  • Zane L., Bargelloni L. and Patarnello T. 2002 Strategies for microsatellite isolation: A review. Mol. Ecol. 11, 1–16.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to numerous individuals for valuable suggestions during the development of this project. We would like to thank Ethiopian Biotechnology Institute for fully funding the research, Ethiopian Biodiversity Institute (EBI) and Sinana Agricultural Research Center for provision of landraces cultivars, respectively. Mr. Keyru is acknowledged for his technical support in laboratory arrangements, DNA extraction and pertinent data collection processes.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, investigation, data collection analysis and visualization: AAD; methodology: AAD, DTD and KT; resource and project administration: KT; supervision: BJKS, MSRK, DTD, KT; validation: BJKS, KT, DTD and MSRK; data analysis: AAD and EA; writing-original draft: AAD, EA and KT; reviewing and editing: KT, DTD, BJKS, MSRK and EA. All authors commented on previous versions of the manuscript and finally they read and approved the final manuscript. This research work was supported by the Ethiopian Biotechnology Institute.

Corresponding author

Correspondence to Kassahun Tesfaye.

Additional information

Corresponding editor: R. S. Sangwan

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 124 kb)

Supplementary file2 (XLSX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dido, A.A., Krishna, M.S.R., Assefa, E. et al. Genetic diversity, population structure and relationship of Ethiopian barley (Hordeum vulgare L.) landraces as revealed by SSR markers. J Genet 101, 9 (2022). https://doi.org/10.1007/s12041-021-01346-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01346-7

Keywords

Navigation