Skip to main content

Advertisement

Log in

Congenital heart defects among Down’s syndrome cases: an updated review from basic research to an emerging diagnostics technology and genetic counselling

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Congenital heart defects (CHD) affect 50% of Down’s syndrome (DS) cases. This review focusses on the pathogenic molecular mechanism leading to the formation of DS-associated CHD along with the advancement of the emerging diagnostic techniques available for such patients in past few decades. We have shed light on the causative genes of DS-associated CHD that are located either on chromosome 21 or outside chromosome 21. Along with locus-specific mutation, numerous SNP and CNV, miRNA, use of maternal folic acid during pregnancy and signalling pathways are also reported to contribute to the formation of CHD in patients with DS. With the help of both these our understanding of pathogenic mechanism causing CHD in DS cases along with the availability of emerging technologies has facilitated a novel discovery that has ultimately provided a better treatment and management for such cases. Accurate diagnosis and treatment are now available with the introduction of CNV detection and NGS based approaches such as WES, WGS, target sequencing and sequencing of foetal cell-free DNA by the medical geneticist and cardiologist have now allowed further identification of familial recurrence risk and relatives who are at risk through genetic counselling, thereby providing reproductive options and improving proper care of DS-associated CHD. Further, gene-editing studies explore novel pathogenic mechanisms and signalling pathways in DS-associated CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Ackerman C., Locke A. E., Feingold E., Reshey B., Espana K., Thusberg J. et al. 2012 An excess of deleterious variants in VEGF-A pathway gene in down-syndrome congenital heart disease in down syndrome associated atrioventricular septal defects. Am. J. Hum. Genet. 91, 646–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahrens-Nicklas R., Khan S., Garbarini J., Woyceichowski S., D’Alessandro L., Zackai H. E. et al. 2016 Utility of genetic evaluation in infants with congenital heart defects admitted to the cardiac intensive care unit. Am. J. Med. Genet. A 170, 3090–3097.

    Article  CAS  PubMed  Google Scholar 

  • Alharbi K. M., Al-Mazroea A. H., Abdallah A. M., Carlus S. J. and Basit S. 2018 Targeted next-generation sequencing of 406 genes identified genetic defects underlying congenital heart disease in Down syndrome patients. Pediatr. Cardiol. 39, 1676–1680.

    Article  PubMed  Google Scholar 

  • Al Turki S., Manickaraj A. K., Mercer C. L., Gerety S. S., Hitz M. P., Lindsay S. et al. 2014 Rare variants in NR2F2 cause congenital heart defects in humans. Am. J. Hum. Genet. 94, 574–585.

    Article  CAS  Google Scholar 

  • Antonarakis S. E. 2017 Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 18, 147–163.

    Article  CAS  PubMed  Google Scholar 

  • Antonarakis S. E., Lyle R., Dermitzakis E. T., Reymond A. and Deutsch S. 2004 Chromosome 14 and Down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5, 725–738.

    Article  CAS  PubMed  Google Scholar 

  • Aoki Y., Niihori T., Inoue S. I. and Matsubara Y. 2016 Recent advances in RASopathies. J. Hum. Genet. 61, 33.

    Article  CAS  PubMed  Google Scholar 

  • Asim A., Ashok K., Srinivasan M., Shalu J. and Sarita A. 2015 Down syndrome: an insight of the disease. J. Biomed. Sci. 22, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Asim A., Agarwal S. and Panigrahi I. 2017a MTRR gene variants may predispose to the risk of Congenital Heart Disease in Down Syndrome patients of Indian Origin. Egy. J. Med. Hum. Genet. 18, 61–66.

    Article  Google Scholar 

  • Asim A., Agarwal S., Panigrahi I., Saiyed N. and Bakshi S. 2017b MTHFR promoter hypermethylation may lead to congenital heart defects in Down syndrome. Intractable Rare Dis. Res. 6, 295–298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow G. M., Chen X. N., Shi Z. Y., Lyons G. E., Kurnit D. M., Celle L. et al. 2001 Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet. Med. 3, 91–101.

    Article  CAS  PubMed  Google Scholar 

  • Bean Lora J. H., Allen E. G., Tinker S. W., Hollis N. D., Locke A. E., Druschel C. et al. 2011 Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: a report from the national Down syndrome project. Birth Defects Res. A Clin. Mol. Teratol. 91, 885–893.

  • Bergstrom S., Carr H., Petersson G., Stephansson O., Bonamy A. K. E., Dahlstrom A. et al. 2016 Trends in congenital heart defects in infants with Down syndrome. Pediatrics 138, e20160123.

    Article  PubMed  Google Scholar 

  • Bermudez B. E. B. V., Medeiros S. L., Bermudez M. B., Novadzki I. M. and Magdalena N. I. R. 2015 Down syndrome: prevalence and distribution of congenital heart disease in Brazil. São Paulo Med. J. 133, 621–624.

    Article  Google Scholar 

  • Bilardo C. M., Müller M. A. and Pajkrt E. 2001 Outcome of fetuses with increased nuchal translucency. Curr. Opin. Obstet. Gynecol. 13, 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Blom H. J. 2009 Folic acid, methylation and neural tube closure in humans. Birth Defects Res. A Clin. Mol. Teratol. 85, 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Botto L. D., Khoury M. J., Mastroiacovo P., Castilla E. E., Moore C. A., Skjaerven R. et al. 1997 The spectrum of congenital anomalies of the VATER association: an International study. Am. J. Med. Genet. 71, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Brandalize A. P., Bandinelli E., Dos Santos P. A., Roisenberg I. and Schuler-Faccini L. 2009 Evaluation of C677T and A1298C polymorphisms of the MTHFR gene as maternal risk factors for Down syndrome and congenital heart defects. Am. J. Med. Genet. A 149, 2080–2087.

    Article  CAS  Google Scholar 

  • Briggs L. E., Kakarla J. and Wessels A. 2012 The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation 84, 117–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y. Q., Li T., Guo W. Y., Su F. J. and Zhang Y. X. 2016 Identification of altered pathways in Down syndrome-associated congenital heart defects using an individualized pathway aberrance score. Genet. Mol. Res. 15. https://doi.org/10.4238/gmr.15027601.

  • Chiu R. W., Chan K. C., Gao Y., Virginia Y. M., Zheng W., Leung T. K. 2008 Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl. Acad. Sci. USA 105, 20458–20463.

  • Committee on Genetics and the Society for Maternal-Fetal Medicine 2016 Committee Opinion No. 682: microarrays and next-generation sequencing technology: the use of advanced genetic diagnostic tools in obstetrics and gynecology. Obstet. Gynecol. 128, e262–e268.

    Article  CAS  Google Scholar 

  • Copel J. A., Pilu G. and Kleinman C. S. 1986 Congenital heart disease and extracardiac anomalies: associations and indications for fetal echocardiography. Am. J. Obstet. Gynecol. 154, 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  • Coppedè F. 2015 The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front. Genet. 6, 223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Alessandro L. C. A., Al Turki S., Manickaraj A. K., Manase D., Mulder B. J. M., Bergin L. et al. 2016 Exome sequencing identifies rare variants in multiple genes in atrioventricular septal defect. Genet. Med. 18, 189.

    Article  PubMed  CAS  Google Scholar 

  • Davies G. E., Howard C. M., Gorman L. M., Farrer M. J., Holland A. J., Williamson R. et al. 1993 Polymorphisms and linkage disequilibrium in the COL6A1 and COL6A2 gene cluster: novel DNA polymorphisms in the region of a candidate gene for congenital heart defects in Down’s syndrome. Hum. Genet. 90, 521–525.

    Article  CAS  PubMed  Google Scholar 

  • De La Pompa J. L., Timmerman L. A., Takimoto H., Yoshida H., Elia A. J., Samper E. et al. 1998 Role of the NF-ATc transcription factor in mophogenesis of cardiac valves and septum. Nature 392, 182–186.

    Article  PubMed  Google Scholar 

  • Demal T. J., Heise M., Reiz B., Dogra D., Braenne I., Reichenspurner H. et al. 2019 A familial congenital heart disease with a possible multigenic Origin involving a mutation in BMPR1A. Sci. Rep. 9, 1–12.

    Article  CAS  Google Scholar 

  • Digilio M. C., Marino B., Cicini M. P., Giannotti A., Formigari R., Dallapiccola B. et al. 1993 Risk of congenital heart defects in relatives of patients with atrioventricular canal. Am. J. Dis. Child. 147, 1295–1297.

    CAS  PubMed  Google Scholar 

  • Digilio M. C., Marino B., Guccione P., Giannotti A., Mingarelli R., Dallapiccola B. et al. 1998 Deletion 8p syndrome. Am. J. Med. Genet. 75, 534–536.

    Article  CAS  PubMed  Google Scholar 

  • Digilio M. C., Dallapiccola B., Marino B. et al. 2006 Atrioventricular canal defect in Bardet Biedl syndrome: clinical evidence supporting the link between atrioventricular canal defect and polydactyly syndromes with ciliary dysfunction. Genet. Med. 8, 536.

    Article  PubMed  Google Scholar 

  • Digilio M. C., Pugnaloni F., Luca A. D., Calcagni G., Baban A., Dentici M. L., Versacci P. et al. 2019 Atrioventricular canal defect and genetic syndromes: the unifying role of sonic hedgehog. Clin. Genet. 95, 268–276.

    Article  CAS  PubMed  Google Scholar 

  • Donofrio M. T., Moon-Grady A. J., Hornberger L. J., Copel A., Sklansky M. S., Abuhamad A. et al. 2014 On behalf of the American Heart Association Adults with Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young snd Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular and Stroke Nursing. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129, 2183–2242.

  • Drumheller T., McGillivray B. C., Behrner D., MacLeod P., McFadden D. E., Roberson J. et al. 1996 Precise localisation of 3p25 breakpoints in four patients with the 3p- syndrome. J. Med. Genet. 33, 842–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein C. J. 2001 The metabolic and molecular bases of inherited disease, pp. 1223–1256. McGraw-Hill, New York.

    Google Scholar 

  • Ermak G., Harris C. D., Battocchio D., Davies K. J. A. et al. 2006 RCAN1 (DSCR1 or Adapt78) stimulates expression of GSK-3beta. FEBS J. 273, 2100–2109.

    Article  CAS  PubMed  Google Scholar 

  • Ferrante M. I., Zullo A., Barra A., Bimonte S., Messeddeg N., Studer M. et al. 2006 Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat. Genet. 38, 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Freeman S. B., Bean L. H., Allen E. G., Tinker S. W., Locke A. E., Druschel C. et al. 2008 Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet. Med. 10, 173e180.

  • Fuentes J. J., Pritchard M. A. and Estivill X. 1997 Genomic organization, alternative splicing, and expression pattern of the DSCR1 (Down syndrome candidate region 1) gene. Genomics. 44(3), 358e361.

  • Fuentes J. J., Genesca L., Kingsbury T. J., Cunningham K. W., Peres-Riba M., Estivilii X. et al. 2000 DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin mediated signaling pathways. Hum. Mol. Genet. 9, 1681–1690.

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg P. C., Adler B. J., Parrott A., Anixt J., Mason K., Phillips J. et al. 2017 High burden of genetic conditions diagnosed in a cardiac neurodevelopmental clinic. Cardiol. Young. 27, 459–466.

    Article  PubMed  Google Scholar 

  • Green E. K., Priestley M. D., Waters J., Maliszewska C., Latif F. and Maher E. R. 2000 Detailed mapping of a congenital heart disease gene in chromosome 3p25. J. Med. Genet. 37, 581–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregg A. R., Skotko B. G., Benkendorf J. L., Monaghan K. G., Bajaj K., Best R. G. et al. 2016 Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet. Med. 18, 1056–1065.

    Article  CAS  PubMed  Google Scholar 

  • Gurrieri F., Franco B., Toriello H. and Neri G. 2007 Oral–facial–digital syndromes: review and diagnostic guidelines. Am. J. Med. Genet. A 143, 3314–3323.

    Article  Google Scholar 

  • Hassold T. and Hunt P. 2001 To error (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.

    Article  CAS  PubMed  Google Scholar 

  • Joziasse I. C., Smith K. A., Chocron S., Dinther A., V, Guryev V., Van de Smagt J. J. et al. 2011 ALK2 mutation in a patient with Downs syndrome and a congenital heart defect. Eur. J. Hum. Genet. 19, 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khazamipour N., Noruzinia M., Fatehmanesh P., Keyhanee M. and Pujol P. 2009 MTHFR promoter ypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum. Reprod. 24, 2361–2364.

    Article  CAS  PubMed  Google Scholar 

  • Korenberg J. R., Bradley C. and Disteche C. M. 1992 Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis. Am. J. Hum. Genet. 50, 294–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaki R., Kosaki K., Matsushima K., Mitsui N., Matsumoto N., Ohashi H. et al. 2005 Refining chromosomal region critical for Down syndrome-related heart defects with a case of cryptic 21q22.2 duplication. Congenit. Anom. (kyoto) 45, 62–64.

    Article  CAS  Google Scholar 

  • Kotb M., Mudd S. H., Mato J. M., Geller A. M., Kredich N. M., Chou J. Y. et al. 1997 Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends Genet. 13, 51–52.

    Article  CAS  PubMed  Google Scholar 

  • Laux D., Malan V., Baiolle F., Boudjemline Y., Amiel J. and Bonnet D. 2013 FOX gene cluster defects in alveolar capillary dysplasia associated with congenital heart disease. Cardiol. Young 23, 697–704.

    Article  PubMed  Google Scholar 

  • Letourneau A., Santoni F. A., Bonilla X., Sailani M. R., Gonzalez D., Kind J. et al. 2014 Domains of genome-wide gene expression dysregulation in Down syndrome. Nature 508, 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Lignon J. M., Bichler Z., Hivert B., Gannier F. E., Cosnay P., Del Rio J. A. et al. 2008 Altered heart rate control in transgenic mice carrying the KCNJ6 gene of the human chromosome 21. Physiol. Genom. 33, 230–239.

    Article  CAS  Google Scholar 

  • Locke A. E., Dooley K. J., Tineker S. W., Cheong S. Y., Feingold E., Allen E. G. et al. 2010 Variation in folate pathway genes contributes to risk of congenital Heart defects among individuals with Down syndrome. Genet. Epidemiol. 34, 613–623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo N. S., Leung P. M., Lau K. C. and Yeung C. Y. 1989 Congenital cardiovascular malformations in Chinese children with Down’s syndrome. Chin. Med. J. (Engl.) 102, 382–386.

    CAS  Google Scholar 

  • Malik S., Cleves M. A., Zhao W., Correa A. and Hobbs C. A. 2007 National Birth Defects Prevention Study. Association between congenital heart defects and small for gestational age. Pediatrics 119, e976–e982.

    Article  PubMed  Google Scholar 

  • Malone F. D., Canick J. A., Ball R. H., Nyberg D. A., Comstock C. H., Bukowski R. et al. 2005 First trimester or second-trimester screening, or both, for Down’s syndrome. N. Engl. J. Med. 10, 2001–2011.

    Article  Google Scholar 

  • Marti-Carvajal A. J., Sola I., Lathyris D. and Salanti G. 2009 Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 4, CD006612.

    Google Scholar 

  • Maslen C. L., Babcock D., Robinson S. W., Bean L. J. H., Dooley K. J. and Willour V. L. 2006a CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome. Am. J. Med. Genet. 140, 2501–2505.

    Article  PubMed  CAS  Google Scholar 

  • Maslen C. L., Babcock D., Redig J. K., Kapeli K., Akkari Y. M. and Olson S. B. 2006b CRELD2: gene mapping, alternate splicing, and comparative genomic identification of the promoter region. Gene 382, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Mato J. M., Alvarez L., Ortiz P. and Pajares M. A. 1997 S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol. Ther. 73, 265–280.

    Article  CAS  PubMed  Google Scholar 

  • Merker J. D., Wenger A. M., Sneddon T., Grove M., Zappala Z., Fresard L. et al. 2018 Long-read genome sequencing identifies casual structural variation in a Mendelian disease. Genet. Med. 20, 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Miko I. 2008 Mitosis, meiosis, and inheritance. Nat. Educ. 1, 206.

    Google Scholar 

  • Morris J. K., Garne E., Wellesley D., Addor M. C., Arriola L., Barisic I. et al. 2014 Major congenital anomalies in babies born with Down syndrome: a EUROCAT population-based registry study. Am. J. Med. Genet. 164, 2979–2986.

    Article  Google Scholar 

  • Mourato F. A., Villachan L. R. R. and Mattos S. D. S. 2014 Prevalence and profile of congenital heart disease and pulmonary hypertension in Down syndrome in a pediatric cardiology service. Rev. Paul. Pediatr. 32, 159–163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nora J. J., Berg K., Nora A. H. 1991 Cardiovascular diseases: genetics, epidemiology, and prevention, Oxford University Press, New York.

    Google Scholar 

  • Park S. C., Mathews R. A., Zuberbuhler J. R., Rowe R. D., Neches W. H. et al. 1997 Down syndrome with congenital heart malformation. Am. J. Dis. Child. 31, 29–33.

    Google Scholar 

  • Pelleri M. C., Gennari E., Locatelli C., Al Piovesab, Caracausi M., Antonaros F. et al. 2017 Genotype-phenotype correlation for congenital heart isease in Down syndrome through analysis of partial trisomy 21 cases. Genomics 109, 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Phipps M. E., Latif F., Prowse A., Payne S. J., Dietz-Band J., Leversha M. et al. 1994 Molecular genetic analysis of the 3psyndrome. Hum. Mol. Genet. 3, 903.

    Article  CAS  PubMed  Google Scholar 

  • Pitkin R. M. 2007 Folate and neural tube defects. Am. J. Clin. Nutr. 85, 285S-288S.

    Article  CAS  PubMed  Google Scholar 

  • Priest J. R., Osoegawa K., Mohammed N., Nanda V., Kundi R., Schiltz K. et al. 2016 De novo and rare variants at multiple loci support the oligogenic origins of atrioventricular septal heart defects. PLoS Genet. 12, 1–25.

    Article  CAS  Google Scholar 

  • Resta R., Biesecker B. B., Bennett R. L., Blum S., Hahn S. E., Strcker M. N. et al. 2006 Society of Genetic Counselors’ Definition Task Force. A new definition of genetic counseling: National Society of Genetic Counselors’ Task Force report. J. Genet. Couns. 15, 77–83.

    Article  PubMed  Google Scholar 

  • Ripoll C., Rivals I., Yahya-Graison E. A., Dauphinot L., Paly E., Mircher C. et al. 2012 Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways. PLoS ONE 7, e41616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Perez V. L., Blair H. J., Rodriguez-Andres M. E., Blanco M. J., Wilson A., Liu Y. N. et al. 2007 Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia. Development 134, 2903–2912.

    Article  CAS  PubMed  Google Scholar 

  • Sailani M. R., Makrythanasis P., Valsesia A., Santoni F. A., Deutsch S., Popadin K. et al. 2013 The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome. Genome Res. 23, 1410–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra-Juhé C., Cuscó I., Homs A., Flores R., Torán N. and Pérez-Jurado L. A. 2015 DNA methylation abnormalities in congenital heart disease. Epigenetics 10, 167–177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoll C., Dott B., Alembik Y. and Roth M. P. 2015 Associated congenital anomalies among cases with Down syndrome. Eur. J. Med. Genet. 58, 674–680.

    Article  PubMed  Google Scholar 

  • Tartaglia M., Zampino G. and Gelb B. D. 2010 Noonan syndrome: clinical aspects and molecular pathogenesis. Mol. Syndromol. 1, 2–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas S., Legendre M., Saunier S., Bessieres B., Alby C., Bonniere M. et al. 2012 TCTN3 mutations cause Mohr-Majewski syndrome. Am. J. Hum. Genet. 91, 372–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traeger-Synodinos J. 2017 Pre-implantation genetic diagnosis. Best Pract. Res. Clin. Obs. Gynaecol. 39, 74–88.

    Article  Google Scholar 

  • Trip J., Stuijvenberg M. V., Dikkers F. G. and Pijnenburg M. W. H. 2002 Unilateral CHARGE association. Eur. J. Pediatr. 161, 78–80.

    Article  PubMed  Google Scholar 

  • Vaissière T., Hung R. J., Zaridze D., Moukeria A., Cuenin C., Fasolo V. et al. 2009 Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res. 69, 243–252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vermeesch J. R., Voet T. and Devriendt K. 2016 Prenatal and pre-implantation genetic diagnosis. Nat. Rev. Genet. 17, 643–656.

    Article  CAS  PubMed  Google Scholar 

  • Wang L., Li Z., Song X., Liu L., Su G. and Cui Y. 2016 Bioinformatic analysis of genes and MicroRNAs associated with atrioventricular septal defect in down syndrome patients. Int. Heart J. 57, 490–495.

    Article  CAS  PubMed  Google Scholar 

  • Weijerman M. E., Van Furth A. M., Noordegraaf A. V., Van Wouwe J. P., Broers C. J. M. et al. 2008 Prevalence, neonatal characteristics, and first-year mortality of Down syndrome: a national study. J. Pediatr. 152, 15–19.

    Article  PubMed  Google Scholar 

  • Wei L. K., Sutherland H., Au A., Camilleri E., Haupt L. M., Gan S. H. et al. 2015 A potential Epigenetic marker mediating serum folate and vitamin B12 levels contributes to the risk of ischemic stroke. Biomed. Res. Int. 167976.

  • Wyse R. K. H., Al-Mahdawi S., Burn J. and Blake K. 1993 Congenital heart disease in CHARGE association. Pediatr. Cardiol. 14, 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Xu J., Wu Q., Wang L., Han J., Pei Y., Zhi W. et al. 2018 Next-generation sequencing identified genetic variations in families with fetal non-syndromic atrioventricular septal defects. Int. J. Clin. Exp. Pathol. 11, 3732–3743.

    PubMed  PubMed Central  Google Scholar 

  • Zeng W., Lui L., Tong Y., Lui H. M., Dai L. and Mao M. 2011 A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population. Genet. Mol. Res. 10, 2597–2605.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India for providing infrastructure. Acknowledgements are credited to Indian Council of Medical Research, Government of India (grant number 45/10/2018-HUM/BMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Agarwal.

Additional information

Corresponding editor: Shantanu Sengupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asim, A., Agarwal, S. Congenital heart defects among Down’s syndrome cases: an updated review from basic research to an emerging diagnostics technology and genetic counselling. J Genet 100, 45 (2021). https://doi.org/10.1007/s12041-021-01296-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01296-0

Keywords

Navigation