Skip to main content
Log in

Identification of genomic regions associated with early plant vigour in lentil (Lens culinaris)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Lentil is one of the most important food legume species, however its genetic and genomic resources remained largely uncharacterized and unexploited. In the past few years, a number of genetic maps have been constructed and marker resources have been developed in lentil. These resources could be exploited for understanding the extent and distribution of genetic variation in genus Lens and also for developing saturated and consensus genetic maps suitable for quantitative trait loci (QTL) mapping and marker-assisted selection. The present study aims to enrich polymerase chain reaction-based linkage map of F10 recombinant inbred lines (RILs) population of 94 individuals derived from cross WA8649090 × Precoz and identification of QTLs linked to early plant vigour traits. Of the 268 polymorphic markers (93 simple sequence repeats (SSR), three inter-simple sequence repeats (ISSRs) and 172 random amplified polymorphic DNA (RAPDs)), 265 (90 SSRs, three ISSRs and 172 RAPDs) were mapped on seven linkage groups, varying in length between 25.6 and 210.3 cM, coverage of 809.4 cM with an average marker spacing of 3.05 cM. The study also reported assigning of 24 new cross-genera SSRs of Trifolium pratense on the present linkage map. The RILs along with the parents were screened for shoot length, root length, seedling length, dry weight, number of leaves and number of branches based on two replications under polyhouse conditions. A QTL-hotspot consisting of six QTLs for shoot length (cm), root length (cm) and seedling length (cm) was observed between a map distances of 56.61 and 86.81 cM on LG1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Aastveit A. H. and Aastveit K. 1993 Effects of genotype-environment interactions on genetic correlations. Theor. Appl. Genet. 86, 1007–1013.

    CAS  PubMed  Google Scholar 

  • Alonso-Blanco C., Goicoechea P. G., Roca A. and Giraldez R. 1993 Genetic linkage between cytological markers and the seed storage protein loci Sec2 [Gli-R2] and Sec3 [glu-R1] in rye. Theor. Appl. Genet. 87, 321–327.

    CAS  PubMed  Google Scholar 

  • Areshechenkova T. and Ganal M. W. 1999 Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42, 536–544.

    Google Scholar 

  • Arumuganathan K. and Earle E. D. 1991 Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rep. 9, 221–231.

    Google Scholar 

  • Blair M. W., Iriarte G. and Beebe S. 2006 QTL Analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theor. Appl. Genet. 112, 1149–1163.

    CAS  PubMed  Google Scholar 

  • Castiglioni P., Ajmone-Marsan P., Wijk R. and Motto M. 1999 AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor. Appl. Genet. 99, 425–431.

    CAS  PubMed  Google Scholar 

  • Chaitieng B., Kaga A., Tomooka N., Isemura T., Kuroda Y. and Vaughan D. A. 2006 Development of a black gram [Vigna mungo (L.) Hepper] linkage map and its comparison with an azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] linkage map. Theor. Appl. Genet. 113, 1261–1269.

    CAS  PubMed  Google Scholar 

  • Duran Y., Fratini R., Garcia P. and De la Vega M. P. 2004 An intersubspecific genetic map of Lens. Theor. Appl. Genet. 108, 1265–1273.

    CAS  PubMed  Google Scholar 

  • Elsik C. G. and Williams C. G. 2001 Families of clustered microsatellites in a conifer genome. Mol. Genet. Genomics 265, 535–542.

    CAS  PubMed  Google Scholar 

  • Eujayl I., Baum M., Erskine W., Pehu E. and Muehlbauer F. J. 1997 The use of RAPD markers for lentil genetic mapping and the evaluation of distorted F2 segregation. Euphytica 96, 405–412.

    CAS  Google Scholar 

  • Eujayl I., Baum M., Powell W., Erskine W. and Pehu E. 1998 A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor. Appl. Genet. 97, 83–89.

    CAS  Google Scholar 

  • Fedoruk M. J., Vandenberg A. and Bett K. E. 2013 Quantitative trait loci analysis of seed quality characteristics in lentil using single nucleotide polymorphism markers. Plant Genet. 6, 1–10.

    Google Scholar 

  • Fratini R., Duran Y., Garcia P. and de la Vega M. P. 2007 Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Spanish J. Agric. Res. 5, 348–356.

    Google Scholar 

  • Freyre R., Skroch P. W., Geffroy V., Adam-Blondon A. F., Shirmohamadali A., Johnson W. C. et al. 1998 Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor. Appl. Genet. 97, 847–856.

    CAS  Google Scholar 

  • Graner A., Jahoor A., Schondelmaier J., Siedler H., Pillen K., Fischbeck G. et al. 1991 Construction of an RFLP map of barley. Theor. Appl. Genet. 83, 250–256.

    CAS  PubMed  Google Scholar 

  • Gupta D., Taylor P. W. J., Inder P., Phan H. T. T., Ellwood S. R., Mathur P. N. et al. 2011 Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to ascochyta blight at seedling and pod stages. Mol. Breed. 30, 429–439.

    Google Scholar 

  • Gupta M., Verma B., Kumar N., Chahota R. K., Rathour R. and Sharma T. R. et al. 2012 Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. J. Genet. 91, 279–287.

    CAS  PubMed  Google Scholar 

  • Hallden C., Hjerdin A., Rading I. M., Sall T., Fridlundh B. and Johannisdottir G. et al. 1996 A high density RFLP linkage map of sugar beet. Genome 39, 634–645.

    CAS  PubMed  Google Scholar 

  • Hamwieh A., Udupa S. M., Choumane W., Sarker. A, Dreyer F., Jung C. et al. 2005 A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of Fusarium vascular wilt resistance. Theor. Appl. Genet. 110, 669–677.

    CAS  PubMed  Google Scholar 

  • Havey M. J. and Muelbauer F. J. 1989 Linkages between restriction fragment length, isozyme and morphological markers in lentil. Theor. Appl. Genet. 77, 395–401.

    CAS  PubMed  Google Scholar 

  • Hwang T., Sayama T., Takahashi M., Takada Y., Nakamoto Y., Funatsuki H. et al. 2009 High density integrated linkage map based on SSR markers in soybean. DNA Res. 16, 213–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahraman A., Kusmenoglu I., Aydin N., Aydogan A., Erskine W. and Muehlbauer F. J. 2004 Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci. 44, 5–12.

    Google Scholar 

  • Kammholz S. J., Campbell A. W., Sutherland M. W., Hollamby G. J., Martin P. J., Eastwood R. F. et al. 2001 Establishment and characterization of wheat genetic mapping populations. Aust. J. Agri. Res. 52, 1079–1088.

    CAS  Google Scholar 

  • Kaur S., Cogan N. O., Stephens A., Noy D., Butsch M., Forster J. W. and Materne 2013 EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor. Appl. Genet. 127, 703–713.

    PubMed  Google Scholar 

  • Kosambi D. 1994 The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175.

    Google Scholar 

  • Kumar J., Srivastava E. and Singh M. 2013 Genetics of early growth vigour in lentil (Lens culinaris Medik.). J. Genet. 92, 323–326.

    PubMed  Google Scholar 

  • Lander E. S. and Botstein D. 1986 Mapping complex genetic traits in humans: new methods using a complete RFLP linkage map. Cold Spring Harb. Symp. Quant. Biol. 51, 49–62.

    PubMed  Google Scholar 

  • Langridge P., Karakousis A., Collin N., Kretschmer J. and Mannin S. 1995 A consensus linkage map of barley. Mol. Breed. 4, 389–395.

    Google Scholar 

  • Lee M. 1995 DNA markers and plant breeding programs. Adv. Agron. 55, 265–344.

    CAS  Google Scholar 

  • Lin Y. R., Schertz K. F. and Paterson A. H. 1995 Comparative analysis of QTL affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141, 391–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukaszewski A. J. 1992 A comparison of physical distribution of recombination in chromosome 1R in diploid rye and in hexaploid triticale Theor. Appl. Genet. 83, 1043–1053.

    Google Scholar 

  • Marcel T. C., Varshney R. K., Barbieri M., Jafary H., De Kock M. J. D., Garner A. et al. 2007 A high density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defense gene homologues. Theor. Appl. Genet. 114, 487–500.

    CAS  PubMed  Google Scholar 

  • Mohan A., Tripathi P. and Motoyoshi Y. 1997 Reaction history of sapphirine granulites and decompression P-T path in a granulite complex from Eastern Ghats. Proceedings of Indian Academy of Sciences. Earth Planet Sci. 106, 115–129.

    CAS  Google Scholar 

  • Muehlbauer F. J., Cho S., Sarker A., McPhee K. E., Coyne C. J., Rajesh P. N. et al. 2006 Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147, 149–165.

    Google Scholar 

  • Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phan H. T. T., Ellwood S. R., Hane J. K., Ford R., Materne M. and Oliver R. P. 2007 Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor. Appl. Genet. 114, 549–558.

    PubMed  Google Scholar 

  • Quarrie S. A. 1996 New molecular tools to improve the efficiency of breeding for increased drought resistance. Plant Growth Regul. 20, 167–178.

    CAS  Google Scholar 

  • Qin H., Lu M. and Goldfarb D. S. 2008 Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae. PLoS One 3, e2670.

    PubMed  PubMed Central  Google Scholar 

  • Radhika P., Gowda S. J. M., Kadoo N. Y., Mhase L. B., Jamadagni B. M. and Sainani M. N. et al. 2007 Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor. Appl. Genet. 115, 209–216.

    CAS  PubMed  Google Scholar 

  • Ramsay L., Macaulay M., Cardle L., Morgante M., degli Ivanissevich S., Maestri E. et al. 1999 Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 17, 415–425.

    CAS  PubMed  Google Scholar 

  • Riaz S., Dangl G. S., Edwards K. J. and Meredith C. P. 2004 A microsatellite marker based framework linkage map of Vitis vinifera L. Theor. Appl. Genet. 108, 864–872.

    CAS  PubMed  Google Scholar 

  • Rubeena Ford R. and Taylor P. W. J. 2003 Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor. Appl. Genet. 107, 910–916.

    PubMed  Google Scholar 

  • Rubeena Taylor P. W. J, Ades P. K. and Ford R. 2006 QTL mapping of resistance in lentil (Lens culinaris ssp culinaris) to ascochyta blight (Ascochyta lentis). Plant Breed. 125, 506–512.

    Google Scholar 

  • Saha G. C., Sarker A., Chen W., Vandemark G. J. and Muehlbauer F. J. 2010a Identification of markers associated with genes for rust resistance in Lens culinaris Medik. Euphytica 175, 261–265.

    CAS  Google Scholar 

  • Saha G. C., Sarker A., Chen W., Vandemark G. J. and Muehlbauer F. J. 2010b Inheritance and linkage map positions of genes conferring resistance to Stemphylium blight in lentil. Crop Sci. 50, 1831–1839.

    CAS  Google Scholar 

  • Sasahara T., Ikarashi H. and Kambayashi M. 1986 Genetic variations in embryo and endosperm weights, seedling growth parameters and α-amylase activity of the germinated grains in rice (Oryza sativa L.). Jpn. J. Breed. 36, 248–261.

    CAS  Google Scholar 

  • Sato S., Isobe S., Asamizu E., Ohmido N., Kataoka R., Nakamura Y. et al. 2005 Comprehensive structural analysis of the genome of red clover (Trifolium pretense L.). DNA Res. 12, 301–364.

    CAS  PubMed  Google Scholar 

  • Schneider B., Marcone C., Kampmann M., Ragozzino A., Lederer W. and Cousin M. T. et al. 1997 Characterization and classification of phytoplasmas from wild and cultivated plants by RFLP and sequence analysis of ribosomal DNA. Eur. J. Pl. Pathol. 103, 675–686.

    CAS  Google Scholar 

  • Shirasawa K., Asamizu E., Fukuoka H., Ohyama A., Sato S. and Nakamura Y. et al. 2010 An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor. Appl. Genet. 121, 731–739.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shokeen B., Choudhary S., Sethy N. K. and Bhatia S. 2011 Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus. Ann. Bot. 108, 321–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza L. M., Gazaffi R., Mantello C. C., Silva C. C., Garcia D. and Guen V. L. et al. 2013 QTL mapping of growth-related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate. PLoS One 8, e61238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava H. S. and Vasistha N. 2012 Division of physiology, biochemistry and microbiology, Indian Institute of Pulse Research, India. Indian J. Agric. Biochem. 25, 44–47.

    CAS  Google Scholar 

  • Tadmor Y., Zamir D. and Ladizinsky G. 1987 Genetic mapping of an ancient translocation in the genus Lens. Theor. Appl. Genet. 73, 883–892.

    CAS  PubMed  Google Scholar 

  • Tahir M. and Muehlbauer F. J. 1994 Gene mapping in lentil with recombinant lines. J. Hered. 85, 306–310.

    CAS  Google Scholar 

  • Tahir M., Simon C. J. and Muehlbauer F. J. 1993 Gene map of lentil: A review. LENS Newslett. 20, 3–10.

    Google Scholar 

  • Tanksley S. D. 1993 Mapping polygenes. Annu. Rev. Genet. 27, 205–233.

    CAS  PubMed  Google Scholar 

  • Tanksley S. D., Young N. D., Paterson A. H. and Bonierbale M. W. 1989 RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7, 257–264.

    CAS  Google Scholar 

  • Tanyolac B., Ozatay S., Kahraman A. and Muehlbauer F. J. 2010 Linkage mapping of lentil (Lens culinaris L.) genome using recombinant inbred lines revealed by AF.LP, ISSR, RAPD and some morphologic markers. J. Agric. Biotech. Sustain. Dev. 2, 001–006.

    Google Scholar 

  • Tullu A., Taran B., Warkentin T. and Vandenburg A. 2008 Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci. 48, 2254–2264.

    Google Scholar 

  • Vaillancourt R. E. and Slinkard A. E. 1993 Inheritance of new genetic markers in lentil (Lens Miller). Euphytica 42, 227–236.

    Google Scholar 

  • Van Ooijen J. W. 2006 JoinMap, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen.

  • Verma P., Goyal R., Chahota R. K., Sharma T. R., Abdin M. Z. and Bhatia S. 2015 Construction of a genetic linkage map and identification of QTLs for seed weight and seed size traits in lentil (Lens culinaris Medik.). PLoS One 10, e0139666.

    PubMed  PubMed Central  Google Scholar 

  • Wang P., Zhou G., Cui L. and Yu S. 2012 Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol. Breed. 29, 99–113.

    CAS  Google Scholar 

  • Wang S., Basten C. J. and Zeng Z. B. 2005 Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh.

    Google Scholar 

  • Williams J. F. and Peterson M. L. 1973 Relations between α-amylase activity and growth of rice seedlings. Crop Sci. 13, 612–615.

    CAS  Google Scholar 

  • Winter P., Benko-Iseppon A. M., Hüttel B., Ratnaparkhe M. Tullu. A., Sonnante G. et al. 2000 A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and Theor. Appl. Genet. 101, 1155–1163.

    CAS  Google Scholar 

  • Xu J. L., Lafitte H. R., Gao Y. M., Fu B. Y., Torres R. and Li Z. K. 2005 QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor. Appl. Genet. 111, 642–650.

    Google Scholar 

  • Yang M., Han Y., Vanburen R., Ming R., Xu L., Han Y. et al. 2012 Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar. BMC Genomics 13, 1–15.

    Google Scholar 

  • Zamir D. and Ladizinsky G. 1984 Genetics of allozyme variants and linkage groups in lentil. Euphytica 33, 329–336.

    CAS  Google Scholar 

  • Zhang W. B., Qiu P. C., Jiang H. W., Liu C. Y., Xin da W., Li C. D. et al. 2012 Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean. Mol. Biol. Rep. 39, 6087–6094.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Chahota.

Additional information

Corresponding editor: Manoj Prasad

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, R., Katoch, M., Singh, M. et al. Identification of genomic regions associated with early plant vigour in lentil (Lens culinaris). J Genet 99, 21 (2020). https://doi.org/10.1007/s12041-020-1182-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-1182-2

Keywords

Navigation