Skip to main content
Log in

In silico analysis of the effects of disease-associated mutations of β-hexosaminidase A in Tay‒Sachs disease

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Tay‒Sachs disease (TSD), a deficiency of β-hexosaminidase A (Hex A), is a rare but debilitating hereditary metabolic disorder. Symptoms include extensive neurodegeneration and often result in death in infancy. We report an in silico study of 42 Hex A variants associated with the disease. Variants were separated into three groups according to the age of onset: infantile (n=28), juvenile (n=9) and adult (n=5). Protein stability, aggregation potential and the degree of conservation of residues were predicted using a range of in silico tools. We explored the relationship between these properties and the age of onset of TSD. There was no significant relationship between protein stability and disease severity or between protein aggregation and disease severity. Infantile TSD had a significantly higher mean conservation score than nondisease associated variants. This was not seen in either juvenile or adult TSD. This study has established that the degree of residue conservation may be predictive of infantile TSD. It is possible that these more highly conserved residues are involved in trafficking of the protein to the lysosome. In addition, we developed and validated software tools to automate the process of in silico analysis of proteins involved in inherited metabolic diseases. Further work is required to identify the function of well-conserved residues to establish an in silico predictive model of TSD severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ainsworth P. J. and Coulter-Mackie M. B. 1992 A double mutation in exon 6 of the beta-hexosaminidase alpha subunit in a patient with the B1 variant of Tay-Sachs disease. Am. J. Hum. Genet. 51, 802–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akalin N., Shi H. P., Vavougios G., Hechtman P., Lo W., Scriver C. R. et al. 1992 Novel Tay-Sachs disease mutations from China. Hum. Mutat. 1, 40–46.

    CAS  PubMed  Google Scholar 

  • Akeboshi H., Chiba Y., Kasahara Y., Takashiba M., Takaoka Y. Ohsawa M. et al. 2007 Production of recombinant β-hexosaminidase A, a potential enzyme for replacement therapy for Tay-Sachs and Sandhoff diseases, in the methylotrophic yeast Ogataea minuta. Appl. Environ. Microbiol. 73, 4805–4812.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akli S., Chelly J., Lacorte J. M., Poenaru L. and Kahn A. 1991 Seven novel Tay-Sachs mutations detected by chemical mismatch cleavage of PCR-amplified cDNA fragments. Genomics 11, 124–134.

    CAS  PubMed  Google Scholar 

  • Akli S., Chomel J. C., Lacorte J. M., Bachner L., Kahn A. and Poenaru L. 1993 Ten novel mutations in the HEXA gene in non-Jewish Tay-Sachs patients. Hum. Mol. Genet. 2, 61–67.

    CAS  PubMed  Google Scholar 

  • Aruna R. M. and Basu D. 1976 Purification and properties of β-hexosaminidase B from monkey brain. J. Neurochem. 27, 337–339.

    CAS  PubMed  Google Scholar 

  • Bang Y. L., Nguyen T. T., Trinh T. T., Kim, Y. J., Song J. and Song Y. H. 2009 Functional analysis of mutations in UDP-galactose-4-epimerase GALE associated with galactosemia in Korean patients using mammalian GALE-null cells. FEBS J. 276, 1952–1961.

    CAS  PubMed  Google Scholar 

  • Barchard K. A. and Pace L. A. 2011 Preventing human error: the impact of data entry methods on data accuracy and statistical results. Comput. Hum. Behav. 27, 1834–1839.

    Google Scholar 

  • Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H. et al. 2000 The protein data bank. Nucleic Acids Res. 28, 235–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boles D. J. and Proia R. L. 1995 The molecular basis of HEXA mRNA deficiency caused by the most common Tay-Sachs disease mutation. Am. J. Hum. Genet. 56, 716–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boonyawat B. P., Tim N., Charcrin S. and Suwanpakdee P. 2016 A novel frameshift mutation of HEXA gene in the first family with classical infantile Tay-Sachs disease in Thailand. Neurol. Asia 21, 281–285.

    Google Scholar 

  • Brown C. A., Neote K., Leung A., Gravel R. A. and Mahuran D. J. 1989 Introduction of the alpha subunit mutation associated with the B1 variant of Tay-Sachs disease into the beta subunit produces a beta-hexosaminidase B without catalytic activity. J. Biol. Chem. 264, 21705–21710.

    CAS  PubMed  Google Scholar 

  • Browne C. and Timson D. J. 2015 In silico prediction of the effects of mutations in the human mevalonate kinase gene: towards a predictive framework for mevalonate kinase deficiency. Ann. Hum. Genet. 79, 451–459.

    CAS  PubMed  Google Scholar 

  • Cachon-Gonzalez M. B., Wang S. Z., Lynch A., Ziegler R., Cheng S. H. and Cox T. M. 2006 Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc. Natl. Acad. Sci. USA 103, 10373–10378.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capriotti E., Fariselli P., Rossi I. and Casadio R. 2008 A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics. 9 Suppl 2, S6.

    PubMed  PubMed Central  Google Scholar 

  • Coen K., Flannagan R. S., Baron S., Carraro-Lacroix L. R., Wang D., Vermeire W. et al. 2012 Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J. Cell Biol. 198, 23–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collier A. M., Nemtsova Y., Kuber N., Banach-Petrosky W., Modak A., Sleat D. E. et al. 2020 Lysosomal protein thermal stability does not correlate with cellular half-life: global observations and a case study of tripeptidyl-peptidase 1. Biochem. J. 477, 727–745.

    CAS  PubMed  Google Scholar 

  • De Gasperi R., Gama Sosa M. A., Battistini S., Yeretsian J., Raghavan S., Zelnik N. et al. 1996 Late-onset GM2 gangliosidosis: Ashkenazi Jewish family with an exon 5 mutation Tyr180–>His in the Hex A alpha-chain gene. Neurology 47, 547–552.

    CAS  PubMed  Google Scholar 

  • Dersh D., Iwamoto Y. and Argon Y. 2016 Tay-Sachs disease mutations in HEXA target the alpha chain of hexosaminidase A to endoplasmic reticulum-associated degradation. Mol. Biol. Cell 27, 3813–3827.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desnick R. J. and Kaback M. M. 2001 Future perspectives for Tay-Sachs disease. Adv. Genet. 44, 349–356.

    CAS  PubMed  Google Scholar 

  • Dragulescu A. A. 2014 xlsx 0.5.7: read, write, format Excel 2007 and Excel 97/2000/XP/2003 files.

  • Drucker L., Proia R. L. and Navon R. 1992 Identification and rapid detection of three Tay-Sachs mutations in the Moroccan Jewish population. Am. J. Hum. Genet. 51, 371–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drucker L., Hemli J. A. and Navon R. 1997 Two mutated HEXA alleles in a Druze patient with late-infantile Tay-Sachs disease. Hum. Mutat. 10, 451–457.

    CAS  PubMed  Google Scholar 

  • Fernandes Filho J. A. and Shapiro B. E. 2004 Tay-Sachs disease. Arch. Neurol. 61, 1466–1468.

    PubMed  Google Scholar 

  • Fernandes M., Kaplan F., Natowicz M., Prence E., Kolodny E., Kaback M. et al. 1992 A new Tay-Sachs disease B1 allele in exon 7 in two compound heterozygotes each with a second novel mutation. Hum. Mol. Genet. 1, 759–761.

    CAS  PubMed  Google Scholar 

  • Fernandes M. J., Hechtman P., Boulay B. and Kaplan F. 1997 A chronic GM2 gangliosidosis variant with a HEXA splicing defect: quantitation of HEXA mRNAs in normal and mutant fibroblasts. Eur. J. Hum. Genet. 5, 129–136.

    CAS  PubMed  Google Scholar 

  • Fernandez-Escamilla A. M., Rousseau F., Schymkowitz J. and Serrano L. 2004 Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306.

    CAS  PubMed  Google Scholar 

  • Funahashi J., Sugita Y., Kitao A. and Yutani K. 2003 How can free energy component analysis explain the difference in protein stability caused by amino acid substitutions? Effect of three hydrophobic mutations at the 56th residue on the stability of human lysozyme. Protein Eng. 16, 665–671.

    CAS  PubMed  Google Scholar 

  • Gazoni E. and Clark C. 2018 Openpyxl 2.5.0—a Python library to read/write Excel 2010 xlsx/xlsm files.

  • Giraud C., Dussau J., Azouguene E., Feillet F., Puech J. P. and Caillaud C. 2010 Rapid identification of HEXA mutations in Tay-Sachs patients. Biochem. Biophys. Res. Commun. 392, 599–602.

    CAS  PubMed  Google Scholar 

  • Gordon B. A., Gordon K. E., Hinton G. G., Cadera W., Feleki V., Bayleran J. et al. 1988 Tay-Sachs disease: B1 variant. Pediatr. Neurol. 4, 54–57.

    CAS  PubMed  Google Scholar 

  • GraphPad Software Inc. 2017. GraphPad Prism 7.04.

  • Gray-Edwards H. L., Randle A. N., Maitland S. A., Benatti H. R., Hubbard S. M., Canning P. F. et al. 2018 Adeno-associated virus gene therapy in a sheep model of tay-sachs disease. Hum. Gene Ther. 29, 312–326.

    CAS  PubMed  Google Scholar 

  • Harrison J. 2017 RSelenium 1.71: R Bindings for ‘Selenium WebDriver’.

  • Hayase K. and Kritchevsky D. 1973 Separation and comparison of isoenzymes of N-acetyl-β-D-hexosaminidase of pregnancy serum by polyacrylamide gel electrofocusing. Int. J. Clin. Chem. (Clinica Chimica Acta) 46, 455–464.

    CAS  Google Scholar 

  • Henrissat B. and Davies G. 1997 Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644.

    CAS  PubMed  Google Scholar 

  • Hepbildikler S. T., Sandhoff R., Kolzer M., Proia R. L. and Sandhoff K. 2002 Physiological substrates for human lysosomal β-hexosaminidase S. J. Biol. Chem. 277, 2562–2572.

    CAS  PubMed  Google Scholar 

  • Ho D. 2018 Notepad++ 7.5.5.

  • Hou Y., Vavougios G., Hinek A., Wu K. K., Hechtman P., Kaplan F. et al. 1996 The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease. Am. J. Hum. Genet. 59, 52–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurowitz G. I., Silver J. M., Brin M. F., Williams D. T. and Johnson W. G. 1993 Neuropsychiatric aspects of adult-onset Tay-Sachs disease: two case reports with several new findings. J. Neuropsychiatry Clin. Neurosci. 5, 30–36.

    CAS  PubMed  Google Scholar 

  • Ikonne J. U., Rattazzi M. C. and Desnick R. J. 1975 Characterization of Hex S, the major residual β-hexosaminidase activity in type O Gm2 gangliosidosis Sandhoff-Jatzkewitz disease. Am. J. Hum. Genet. 27, 639–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • JetBrains 2017 PyCharm.

  • Karumuthil-Melethil S., Nagabhushan Kalburgi S., Thompson P., Tropak M., Kaytor M. D., Keimel J. G. et al. 2016 Novel vector design and hexosaminidase variant enabling self-complementary adeno-associated virus for the treatment of Tay-Sachs disease. Hum. Gene Ther. 27, 509–521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato A., Nakagome I., Nakagawa S., Kinami K., Adachi I., Jenkinson S. F. et al. 2017 In silico analyses of essential interactions of iminosugars with the Hex A active site and evaluation of their pharmacological chaperone effects for Tay-Sachs disease. Org. Biomol. Chem. 15, 9297–9304.

    CAS  PubMed  Google Scholar 

  • Kaufman M., Grinshpun-Cohen J., Karpati M., Peleg L., Goldman B., Akstein E. et al. 1997 Tay-Sachs disease and HEXA mutations among Moroccan Jews. Hum. Mutat. 10, 295–300.

    CAS  PubMed  Google Scholar 

  • Korneluk R. G., Mahuran D. J., Neote K., Klavins M. H., O’Dowd B. F., Tropak M. et al. 1986 Isolation of cDNA clones coding for the α-subunit of human β-hexosaminidase. Extensive homology between the α- and β-subunits and studies on Tay-Sachs disease. J. Biol. Chem. 261, 8407–8413.

    CAS  PubMed  Google Scholar 

  • Krieger E., Joo K., Lee J., Lee J., Raman S., Thompson J. et al. 2009 Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77 Suppl 9, 114–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kytzia H. J. and Sandhoff K. 1985 Evidence for two different active sites on human β-hexosaminidase A. Interaction of GM2 activator protein with β-hexosaminidase A. J. Biol. Chem. 260, 7568–7572.

    CAS  PubMed  Google Scholar 

  • Lange P. F., Wartosch L., Jentsch T. J. and Fuhrmann, J. C. 2006 ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440, 220–223.

    CAS  PubMed  Google Scholar 

  • Lemieux M. J., Mark B. L., Cherney M. M., Withers S. G., Mahuran D. J. and James M. N. 2006 Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis. J. Mol. Biol. 359, 913–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lew R. M., Burnett L., Proos A. L. and Delatycki M. B. 2015 Tay-Sachs disease: current perspectives from Australia. Appl. Clin. Genet. 8, 19–25.

    PubMed  PubMed Central  Google Scholar 

  • Liang S., Zhang C., Liu S. and Zhou Y. 2006. Protein binding site prediction using an empirical scoring function. Nucleic Acids Res. 34, 3698–3707.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Little L. E., Lau M. M., Quon D. V., Fowler A. V. and Neufeld E. F. 1988. Proteolytic processing of the alpha-chain of the lysosomal enzyme, beta-hexosaminidase, in normal human fibroblasts. J. Biol. Chem. 263, 4288–4292.

    CAS  PubMed  Google Scholar 

  • Maegawa G. H., Stockley T., Tropak M., Banwell B., Blaser S., Kok F. et al. 2006 The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics 118, e1550–e15562.

    PubMed  Google Scholar 

  • Maegawa G. H., Tropak M., Buttner J., Stockley T., Kok F., Clarke J. T. et al. 2007 Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 gangliosidosis. J. Biol. Chem. 282, 9150–9161.

    CAS  PubMed  Google Scholar 

  • Maiti R., Van Domselaar G. H., Zhang H. and Wishart D. S. 2004 SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32, W590–W5904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mark B. L., Mahuran D. J., Cherney M. M., Zhao D., Knapp S. and James M. N. 2003 Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. J. Mol. Biol. 327, 1093–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mark B. L., Vocadlo D. J., Knapp S., Triggs-Raine B. L., Withers S. G. and James M. N. 2001 Crystallographic evidence for substrate-assisted catalysis in a bacterial β-hexosaminidase. J. Biol. Chem. 276, 10330–10337.

    CAS  PubMed  Google Scholar 

  • Masingue M., Dufour L., Lenglet T., Saleille L., Goizet C., Ayrignac X. et al. 2020 Natural history of adult patients with gm2 gangliosidosis. Annl. Neurol. https://doi.org/10.1002/ana.25689.

    Book  Google Scholar 

  • Matsuzawa F., Aikawa S., Sakuraba H., Lan H. T., Tanaka A., Ohno K. et al. 2003 Structural basis of the GM2 gangliosidosis B variant. J. Hum. Genet. 48, 582–589.

    CAS  PubMed  Google Scholar 

  • McCorvie T. J. and Timson D. J. 2013 In silico prediction of the effects of mutations in the human UDP-galactose 4’-epimerase gene: towards a predictive framework for type III galactosemia. Gene 524, 95–104.

    CAS  PubMed  Google Scholar 

  • Mintseris J. and Weng Z. 2005 Structure, function, and evolution of transient and obligate protein-protein interactions. Proc. Natl. Acad. Sci. USA 102, 10930–10935.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mistri M., Tamhankar P. M., Sheth F., Sanghavi D., Kondurkar P., Patil S. et al. 2012 Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India. PLoS One 7, e39122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montalvo A. L., Filocamo M., Vlahovicek K., Dardis A., Lualdi S., Corsolini F. et al. 2005 Molecular analysis of the HEXA gene in Italian patients with infantile and late onset Tay-Sachs disease: detection of fourteen novel alleles. Hum. Mutat. 26, 282.

    PubMed  Google Scholar 

  • Mules E. H., Hayflick S., Miller C. S., Reynolds L. W. and Thomas G. H. 1992 Six novel deleterious and three neutral mutations in the gene encoding the alpha-subunit of hexosaminidase A in non-Jewish individuals. Am. J. Hum. Genet. 50, 834–841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Najmabadi H., Hu H., Garshasbi M., Zemojtel T., Abedini S. S., Chen W. et al. 2011 Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57–63.

    CAS  PubMed  Google Scholar 

  • Nakano T., Muscillo M., Ohno K., Hoffman A. J. and Suzuki K. 1988 A point mutation in the coding sequence of the beta-hexosaminidase alpha gene results in defective processing of the enzyme protein in an unusual GM2-gangliosidosis variant. J. Neurochem. 51, 984–987.

    CAS  PubMed  Google Scholar 

  • Nakano T., Nanba E., Tanaka A., Ohno K., Suzuki Y. and Suzuki K. 1990 A new point mutation within exon 5 of beta-hexosaminidase alpha gene in a Japanese infant with Tay-Sachs disease. Annl. Neurol. 27, 465–473.

    CAS  Google Scholar 

  • Navon R. and Proia R. L. 1989 The mutations in Ashkenazi Jews with adult GM2 gangliosidosis, the adult form of Tay-Sachs disease. Science 243, 1471–1474.

    CAS  PubMed  Google Scholar 

  • Navon R., Khosravi R., Korczyn T., Masson M., Sonnino S., Fardeau M. et al. 1995 A new mutation in the HEXA gene associated with a spinal muscular atrophy phenotype. Neurology 45, 539–543.

    CAS  PubMed  Google Scholar 

  • Neote K., Bapat B., Dumbrille-Ross A., Troxel C., Schuster S. M., Mahuran D. J. et al. 1988 Characterization of the human HEXB gene encoding lysosomal β-hexosaminidase. Genomics 3, 279–286.

    CAS  PubMed  Google Scholar 

  • Neudorfer O., Pastores G. M., Zeng B. J., Gianutsos J., Zaroff C. M. and Kolodny E. H. 2005 Late-onset Tay-Sachs disease: phenotypic characterization and genotypic correlations in 21 affected patients. Genet. Med. 7, 119–123.

    CAS  PubMed  Google Scholar 

  • Ohkuma S. and Poole B. 1978 Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA 75, 3327–3331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno K., Saito S., Sugawara K. and Sakuraba H. 2008 Structural consequences of amino acid substitutions causing Tay-Sachs disease. Mol. Genet. Metab. 94, 462–468.

    CAS  PubMed  Google Scholar 

  • Oliver C. and Timson D. J. 2017 In silico prediction of the effects of mutations in the human triose phosphate isomerase gene: towards a predictive framework for TPI deficiency. Eur. J. Med. Genet. 60, 289–298.

    PubMed  Google Scholar 

  • Ornaghi F., Sala D., Tedeschi F., Maffia M. C., Bazzucchi M., Morena F. et al. 2020 Novel bicistronic lentiviral vectors correct β-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis. Neurobiol. Dis. 134, 104667.

    CAS  PubMed  Google Scholar 

  • Ou L., Kim S., Whitley C. B. and Jarnes-Utz J. R. 2019 Genotype-phenotype correlation of gangliosidosis mutations using in silico tools and homology modeling. Mol. Genet. Metab. Rep. 20, 100495.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ou L., Przybilla M. J., Tăbăran A.-F., Overn P., O’Sullivan M. G., Jiang X. et al. 2020 A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases. Gene Ther. https://doi.org/10.1038/s41434-019-0120-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandurangan A. P., Ochoa-Montano B., Ascher D. B. and Blundell T. L. 2017 SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res. 45, W229–W235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parthiban V., Gromiha M. M. and Schomburg D. 2006 CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res. 34, W239–W242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passos O., Fernandes P. A. and Ramos M. J. 2011 QM/MM study of the catalytic mechanism of GalNAc removal from GM2 ganglioside catalyzed by human β-hexosaminidaseA. J. Phys. Chem. B 115, 14751–14759.

    CAS  PubMed  Google Scholar 

  • Paw B. H., Moskowitz S. M., Uhrhammer N., Wright N., Kaback M. M. and Neufeld E. F. 1990 Juvenile GM2 gangliosidosis caused by substitution of histidine for arginine at position 499 or 504 of the alpha-subunit of beta-hexosaminidase. J. Biol. Chem. 265, 9452–9457.

    CAS  PubMed  Google Scholar 

  • Petroulakis E., Cao Z., Clarke J. T., Mahuran D. J., Lee G. and Triggs-Raine B. 1998 W474C amino acid substitution affects early processing of the alpha-subunit of beta-hexosaminidase A and is associated with subacute G M2 gangliosidosis. Hum. Mutat. 11, 432–442.

    CAS  PubMed  Google Scholar 

  • Pires D. E., Ascher D. B. and Blundell T. L. 2014 mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30, 335–342.

    CAS  PubMed  Google Scholar 

  • Platt F. M., Jeyakumar M., Andersson U., Priestman D. A., Dwek R. A., Butters T. D. et al. 2001 Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J. Inher. Metab. Dis. 24, 275–290.

    CAS  PubMed  Google Scholar 

  • Proia R. L. and Neufeld E. F. 1982 Synthesis of beta-hexosaminidase in cell-free translation and in intact fibroblasts: an insoluble precursor alpha chain in a rare form of Tay-Sachs disease. Proc. Natl. Acad. Sci. USA 79, 6360–6364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pundir S., Martin M. J. and O’Donovan C. 2017 UniProt protein knowledgebase. Methods Mol. Biol. 1558, 41–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • R-Project. 2018 grep—pattern matching and replacement.

  • Raghavan S. S., Krusell A., Krusell J., Lyerla T. A. and Kolodny E. H. 1985 GM2-ganglioside metabolism in hexosaminidase A deficiency states: determination in situ using labeled GM2 added to fibroblast cultures. Am. J. Hum. Genet. 37, 1071–1082.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro M. G., Sonin T., Pinto R. A., Fontes A., Ribeiro H., Pinto E. et al. 1996 Clinical, enzymatic, and molecular characterisation of a Portuguese family with a chronic form of GM2-gangliosidosis B1 variant. J. Med. Genet. 33, 341–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson D. and Stirling J. L. 1968 N-Acetyl-β-glucosaminidases in human spleen. Biochem. J. 107, 321–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rountree J. S., Butters T. D., Wormald M. R., Boomkamp S. D., Dwek R. A., Asano N. et al. 2009 Design, synthesis, and biological evaluation of enantiomeric β-N-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease. Chem. Med. Chem. 4, 378–392.

    CAS  PubMed  Google Scholar 

  • Schrödinger L. 2018 The PyMOL molecular graphics system, version 2.0

  • Shapiro B. E. and Natowicz M. R. 2009 Late-onset Tay-Sachs disease presenting as a childhood stutter. J. Neurol. Neurosurg. Psychiatry 80, 94–95.

    CAS  PubMed  Google Scholar 

  • Sharma R., Bukovac S., Callahan J. and Mahuran D. 2003 A single site in human beta-hexosaminidase A binds both 6-sulfate-groups on hexosamines and the sialic acid moiety of GM2 ganglioside. Biochim. Biophys. Acta 1637, 113–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheth J., Mistri M., Sheth F., Shah R., Bavdekar A., Godbole K. et al. 2014 Burden of lysosomal storage disorders in India: experience of 387 affected children from a single diagnostic facility. JIMD Rep. 12, 51–63.

    PubMed  Google Scholar 

  • Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W. et al. 2011 Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.

    PubMed  PubMed Central  Google Scholar 

  • Sormanni P., Aprile F. A. and Vendruscolo M. 2015 The CamSol method of rational design of protein mutants with enhanced solubility. J. Mol. Biol. 427, 478–490.

    CAS  PubMed  Google Scholar 

  • Specola N., Vanier M. T., Goutieres F., Mikol J. and Aicardi J. 1990 The juvenile and chronic forms of GM2 gangliosidosis: clinical and enzymatic heterogeneity. Neurology 40, 145–150.

    CAS  PubMed  Google Scholar 

  • Steiner K. M., Brenck J., Goericke S. and Timmann D. 2016 Cerebellar atrophy and muscle weakness: late-onset Tay-Sachs disease outside Jewish populations. BMJ Case Rep. 2016, bcr2016214634.

    PubMed  PubMed Central  Google Scholar 

  • Svennerholm L. and Fredman P. 1980 A procedure for the quantitative isolation of brain gangliosides. Biochim. Biophys. Acta 617, 97–109.

    CAS  PubMed  Google Scholar 

  • Tabeta K., Hoebe K., Janssen E. M., Du X., Georgel P., Crozat K. et al. 2006 The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7, 156–164.

    CAS  PubMed  Google Scholar 

  • Tanaka A., Hoang L. T., Nishi Y., Maniwa S., Oka M. and Yamano T. 2003 Different attenuated phenotypes of GM2 gangliosidosis variant B in Japanese patients with HEXA mutations at codon 499, and five novel mutations responsible for infantile acute form. J. Hum. Genet. 48, 571–574.

    CAS  PubMed  Google Scholar 

  • Tanaka A., Ohno K., Sandhoff K., Maire I., Kolodny E. H., Brown A. et al. 1990a GM2-gangliosidosis B1 variant: analysis of beta-hexosaminidase alpha gene abnormalities in seven patients. Am. J. Hum. Genet. 46, 329–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A., Punnett H. H. and Suzuki K. 1990b A new point mutation in the beta-hexosaminidase alpha subunit gene responsible for infantile Tay-Sachs disease in a non-Jewish Caucasian patient a Kpn mutant. Am. J. Hum. Genet. 47, 568–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A., Sakazaki H., Murakami H., Isshiki G. and Suzuki K. 1994 Molecular genetics of Tay-Sachs disease in Japan. J. Inherit. Metab. Dis. 17, 593–600.

    CAS  PubMed  Google Scholar 

  • Tartaglia G. G. and Vendruscolo M. 2008 The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev. 37, 1395–1401.

    CAS  PubMed  Google Scholar 

  • Team L. 2018 Lazarus v1.82: The professional Free Pascal RAD IDE.

  • Team R. 2016 RStudio: integrated development environment for R.

  • Tettamanti G. 2004 Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J. 20, 301–317.

    CAS  PubMed  Google Scholar 

  • Timson D. J. 2015 Value of predictive bioinformatics in inherited metabolic diseases. World J. Med. Genet. 5, 46–51.

    Google Scholar 

  • Triggs-Raine B. L., Akerman B. R., Clarke J. T. and Gravel R. A. 1991 Sequence of DNA flanking the exons of the HEXA gene, and identification of mutations in Tay-Sachs disease. Am. J. Hum. Genet. 49, 1041–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trop I., Kaplan F., Brown C., Mahuran D. and Hechtman P. 1992 A glycine250–> aspartate substitution in the alpha-subunit of hexosaminidase A causes juvenile-onset Tay-Sachs disease in a Lebanese-Canadian family. Hum. Mutat. 1, 35–39.

    CAS  PubMed  Google Scholar 

  • Tropak M. B., Reid S. P., Guiral M., Withers S. G. and Mahuran D. 2004 Pharmacological enhancement of β-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients. J. Biol. Chem. 279, 13478–13487.

    CAS  PubMed  Google Scholar 

  • Tropak M. B., Bukovac S. W., Rigat B. A., Yonekawa S., Wakarchuk W. and Mahuran D. J. 2010 A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates. Glycobiology 20, 356–365.

    CAS  PubMed  Google Scholar 

  • Tsuji D., Akeboshi H., Matsuoka K., Yasuoka H., Miyasaki E., Kasahara Y. et al. 2011 Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis. Annl. Neurol. 69, 691–701.

    CAS  Google Scholar 

  • UniProt Consortium T. 2018 UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46, 2699.

    PubMed  PubMed Central  Google Scholar 

  • Valdar W. S. 2002 Scoring residue conservation. Proteins 48, 227–241.

    CAS  PubMed  Google Scholar 

  • Valdar W. S. and Thornton J. M. 2001 Conservation helps to identify biologically relevant crystal contacts. J. Mol. Biol. 313, 399–416.

    CAS  PubMed  Google Scholar 

  • Zampieri S., Montalvo A., Blanco M., Zanin I., Amartino H., Vlahovicek K. et al. 2012 Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation. Gene 499, 262–265.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RK was supported by a summer studentship funded by Queen’s University, Belfast. This research did not receive any other specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Timson.

Additional information

Corresponding editor: H. A. Ranganath

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazal, M.I., Kacprzyk, R. & Timson, D.J. In silico analysis of the effects of disease-associated mutations of β-hexosaminidase A in Tay‒Sachs disease. J Genet 99, 42 (2020). https://doi.org/10.1007/s12041-020-01208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01208-8

Keywords

Navigation