Skip to main content
Log in

The utility of NBS-profiling for characterization of yellow rust resistance in an F6 durum wheat population

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Seedling and adult plant (field) resistance to yellow rust in the durum wheat (Triticum turgidum ssp. durum) cross Kunduru-1149 x Cham-1 was characterized using a functionally-targeted DNA marker system, NBS-profiling. Chi-squared analysis indicated a four gene model conferring seedling yellow rust resistance against Puccinia striiformis f. sp. tritici isolate WYR85/22 (virulent on Yr2, Yr6, Yr7 and Yr9). Interval mapping located two QTL for yellow rust resistance on the long arm of chromosome 1B, while Kruskal–Wallis single marker regression identified a number of additional marker loci associated with seedling and/or adult plant, field resistance to yellow rust. These results suggested that much of the yellow rust resistance seen in the field may be due to seedling expressed resistance (R) genes. Characterization of the DNA sequence of three NBS marker loci indicated that all showed significant homology to functionally-characterized R-genes and resistance gene analogues (RGAs), with the greatest homology being NBS-LRR-type R-genes and RGAs from cereal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W. et al. 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayliffe M. A. and Lagudah E. S. 2004 Molecular genetics of disease resistance in cereals. Ann. Bot. 94, 765–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfield J. K., Smith K. F. and Staden R. 1995 A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd L. A. and Minchin P. N. 2001 Wheat mutants showing altered adult plant disease resistance. Euphytica 122, 361–368.

    Google Scholar 

  • Boyd L. A., Smith P. H., Wilson A. H. and Minchin P. N. 2002 Mutations in wheat showing altered resistance to yellow and brown rust. Genome 45, 1035–1040.

    CAS  PubMed  Google Scholar 

  • Calenge F., van der Linden C. G., van de Weg E., Schouten H. J., van Arkel G., Denance C. et al. 2005 Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor. Appl. Genet. 110, 660–668.

    CAS  PubMed  Google Scholar 

  • Çetin L., Düşünceli F. and Albustan S. 2000 Wheat stripe rust virulences and reactions of registered varieties in field nurseries in Ankara/Turkey in the period 1991 – 1999. In Wheat in a Global Environment, 6th International Wheat Conference Abstracts, 5-9 June 2000 (ed. Z. Bedo), pp. 164. Budapest, Hungary.

  • Charles M., Belcram H., Just J., Huneau C., Viollet A., Couloux A. et al. 2008 Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180, 1071–1086.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X. M. 2005 Epidemiology and control of stripe rust Puccinia striiformis f. sp. tritici on wheat. Can. J. Plant Pathol. 27, 314–337.

    Google Scholar 

  • Dilbirligi M. and Gill K. S. 2003 Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol. Biol. 53, 771–787.

    CAS  PubMed  Google Scholar 

  • Dilbirligi M., Erayman M., Sandhu D., Sidhu D. and Gill K. S. 2004 Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166, 461–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards K. J., Barker J. H. A., Daly A., Jones C. and Karp A. 1996 Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20, 758–760.

    CAS  PubMed  Google Scholar 

  • Ellen D., Tarr K. and Alexander H. M. 2009 TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res. Notes 2, 197.

    Google Scholar 

  • Ellis J., Dodds P. and Pryor T. 2000 Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3, 278–284.

    CAS  PubMed  Google Scholar 

  • Elouafi I., Nachit M. M. and Martin L. M. 2001 Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135, 255–261.

    CAS  PubMed  Google Scholar 

  • Feuillet C. and Keller B. 1999 High gene density is conserved as syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci. USA 96, 8265–8270.

    CAS  PubMed  Google Scholar 

  • Feuillet C., Penger A., Gellner K., Mast A. and Keller B. 2001 Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanism of local rearrangements at paralogous loci. Plant Physiol. 125, 1304–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feuillet C. and Eversole K. 2007 Physical mapping of the wheat genome: a coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Israel J. Plant Sci. 55, 307–313.

    Google Scholar 

  • Gilbert N. 2010 Virulent wheat fungus invades South Africa. Nature https://doi.org/10.1038/news.2010.265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill B. S., Appels R., Botha-Oberholster A. M., Buell C. R., Bennetzen J. L., Chalhoub B. et al. 2004 A workshop report on wheat genome sequencing. Genetics 168, 1087–1096.

    PubMed  PubMed Central  Google Scholar 

  • Göçmen B. 2001 Genetic characterization of 150 F6 inbred durum wheat lines derived from Kunduru-1149 x Cham-1 cross using molecular markers and economically important traits. Ph.D thesis, Middle East Technical University, Ankara, Turkey.

  • Göçmen B., Albustan S., Kaya Z., Keskin S. and Taskin V. 2003 Response of 150 F6 inbred durum wheat lines derived from Kunduru-1149 x Cham-1 cross to yellow rust (Puccinia striiformis). Crop Prot. 22, 787–793.

    Google Scholar 

  • Hammond-Kosack K. E. and Jones J. D. G. 1997 Plant disease resistance genes. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 575–608.

    CAS  Google Scholar 

  • Hayashi K. 1991 PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. l1, 34–38.

    CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium et al. 2018 Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 17, 361.

  • Jagger L. J., Newell C., Berry S. T., MacCormack R. and Boyd L. A. 2011 The genetic characterisation of stripe rust resistance in the German wheat cultivar Alcedo. Theor. Appl. Genet. 122, 723–733.

    CAS  PubMed  Google Scholar 

  • Lin F. and Chen X. M. 2009 Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor. Appl. Genet. 118, 631–642.

    CAS  PubMed  Google Scholar 

  • Liu J. J. and Ekramoddoullah A. K. M. 2007 The CC-NBS-LRR Subfamily in Pinus monticola: targeted identification, gene expression, and genetic linkage with resistance to Cronartium ribicola. Phytopathology 97, 728–736.

    CAS  PubMed  Google Scholar 

  • Mallard S., Gaudet D., Aldeia A., Abelard C., Besnard A. L., Sourdille P. et al. 2005 Genetic analysis of durable resistance to yellow rust in bread wheat. Theor. Appl. Genet. 110, 1401–1409.

    CAS  PubMed  Google Scholar 

  • Maccaferri M., Harris N. S., Twardziok S. O., Gundlach H., Spannagl M., Ormanbekova D. et al. 2019 Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895.

    CAS  PubMed  Google Scholar 

  • Mantovani P., van der Linden G., Maccaferri M., Sanguineti M. C., Tuberosa R. 2006 Nucleotide-binding site (NBS) profiling of genetic diversity in durum wheat. Genome 49, 1473–1480.

    CAS  PubMed  Google Scholar 

  • Marris E. 2009 Wheat fungus threatens global crops. Nature https://doi.org/10.1038/news.2009.168 News.

    Article  PubMed  Google Scholar 

  • Meyers B. C., Dickerman A. W, Michelmore R. W., Sivaramakrishnan S., Sobral B. W. and Young N. D. 1999 Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20, 317–332.

    CAS  PubMed  Google Scholar 

  • Miller R. N. G., Bertioli D. J., Baurens F. C., Santos C. M. R., Alves P. C., Martins N. F. et al. 2008 Analysis of non-TIR NBS-LRR resistance gene analogs in Musa accuminata colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol. 8, 15.

    PubMed  PubMed Central  Google Scholar 

  • Mun J. H., Yu H. J., Park S. and Park B. S. 2009 Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol. Genet. Genomics 282, 617–631.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nachit M. M., Elouafi I., Pagnotta M.A., Elsaleh A., Lacono E., Labhilili M. et al. 2001 Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor. Appl. Genet. 102, 177–186.

    CAS  Google Scholar 

  • Van Ooijen J. W., Kyazma B. V. and Wageningen 2004 MapQTL®5, software for the mapping of quantitative trait loci in experimental pepulations (https://www.kyazma.nl/index.php/MapQTL/).

  • Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P. et al. 1998 A microsatellite map of wheat. Genetics 149, 2007–2023.

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues P., Garrood J. M., Shen Q. H., Smith P. H. and Boyd L. A. 2004 The genetics of non-host disease resistance in wheat to barley yellow rust. Theor. Appl. Genet. 109, 425–432.

    CAS  PubMed  Google Scholar 

  • Rosewarne G. M., Singh R. P., Huerta-Espino J., William H. M., Bouchet S., Cloutier S. et al. 2006 Leaf tip necrosis, molecular markers and ß1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor. Appl. Genet. 112, 500–508.

    CAS  PubMed  Google Scholar 

  • Sakamoto K., Tada Y., Yokozeki Y., Akagi H., Hayashi N., Fujimura T. et al. 1999 Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol. Biol. 40, 847–855.

    CAS  PubMed  Google Scholar 

  • Sayar-Turet M., Dreisigacker S., Braun H. J., Hede A., MacCormack R. and Boyd L. A. 2011 Genetic variation within and between winter wheat genotypes from Turkey, Kazakhstan and Europe as determined by NBS-profiling. Genome 54, 419–430.

    PubMed  Google Scholar 

  • Smith P. H., Koebner R. M. D. and Boyd L. A. 2002 The development of a STS marker linked to yellow rust resistance derived from the wheat cultivar Moro. Theor. Appl. Genet. 104, 1278–1282.

    CAS  PubMed  Google Scholar 

  • Somers D. J., Isaac P. and Edwards K. 2004 A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 1105–1114.

    CAS  PubMed  Google Scholar 

  • Song Q. J., Fickus E. W. and Cregan P. B. 2002 Characterization of trinucleotide SSR motifs in wheat. Theor. Appl. Genet. 104, 286–293.

    CAS  PubMed  Google Scholar 

  • Stam P. and Ooijen J. W. 1995 Joinmap version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen.

  • Syed N. H., Sørensen A. P., Antonise R., van der Wiel C., van der Linden C. G., van der Westende W. et al. 2006 A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor. Appl. Genet. 112, 517–527.

    CAS  PubMed  Google Scholar 

  • Tufan H. 2006 Characterization of yellow rust (Puccinia striiformis) resistance in an F6 durum wheat population. M.Sc thesis, Boğaziçi University, Istanbul, Turkey.

  • Vales M. I., Schön C. C., Capettini F., Chen X. M., Corey A. E., Mather D. E. et.al. 2005 Effect of population size on the estimation of QTL: a test using resistance in barley stripe rust. Theor. Appl. Genet. 111, 1260–1270.

    CAS  PubMed  Google Scholar 

  • van der Linden C. G., Wouters D. C. A. E., Mihalka V., Kochieva E. Z., Smulders M. J. M. and Vosman B. 2004 Efficient targeting of plant disease resistance loci using NBS profiling. Theor. Appl. Genet. 109, 384–393.

    PubMed  Google Scholar 

  • Waqar A., Khattak S. H., Begum S., Rehman T., Rabia A., Shehzad W. et al. 2018 Stripe rust: a review of the disease, Yr genes and its molecular markers. Sarhad J. Agric. 34, 188–201.

    Google Scholar 

  • Wellings C. R., Boyd L. A. and Chen X. M. 2012 Resistance to stripe rust in wheat: pathogen biology driving resistance breeding. In Disease resistance in wheat (ed. I. Sharma). CABI Publications, Wallingford.

    Google Scholar 

  • Williams M., Singh R. P., Huerta-Espino J., Islas S. O. and Hoisington D. 2003 Molecular marker mapping of leaf rust resistance Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93, 153–159.

    Google Scholar 

  • Zhang J., Yuan Y., Niu C., Hinchliffe D. J., Lu Y., Yu S. et al. 2007 AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Sci. 47, 180–187.

    CAS  Google Scholar 

  • Zhang K., Xu J. F., Duan S. G., Pang W. F., Bian C. S., Liu J. et al. 2014 NBS profiling identifies potential novel locus from Solanum demissum that confers broad-spectrum resistance to Phytophthora infestans. J. Integra. Agric. 13, 1662–1671.

    CAS  Google Scholar 

  • Zhou B., Qu S., Liu G., Dolan M., Sakai H., Lu G. et al. 2006 The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant Microbe Interact. 19, 1216–1228.

    CAS  Google Scholar 

  • Ziyaev Z. M., Sharma R. C., Nazari K., Morgounov A., Amanov A. A., Ziyadullaev Z. F. et al. 2011 Improving wheat stripe rust resistance in Central Asia and the Caucasus. Euphytica 179, 197–207.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. M. Nachit of ICARDA, Syria for creating the Kunduru-1149 x Cham-1 cross and to the Central Research Institute, Ankara, Turkey for providing the study material. This study was supported by Bogazici University Research Fund (04HB101); TUBITAK – The Scientific and Technical Council of Turkey, project number: TBAG-2357-103T178 and an EMBO Fellow Grant: ASTF109-2004. We would also like to thank the British Society of Plant Pathology for awarding Ms. Hale Tufan a M.Sc. bursary that enabled her to carry out part of her M.Sc. research work in the group of Dr. Lesley A. Boyd at the John Innes Centre. The Genbank accession numbers for NBS2-290, NBS3-290 and NBS2-350 are DQ978777, DQ978778 and DQ978779, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belgin Göçmen Taşkin.

Additional information

Corresponding editor: Arun Joshi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tufan, H.A., Göçmen Taşkin, B., Maccormack, R. et al. The utility of NBS-profiling for characterization of yellow rust resistance in an F6 durum wheat population. J Genet 98, 98 (2019). https://doi.org/10.1007/s12041-019-1143-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1143-9

Keywords

Navigation