Abstract
Iron (Fe) and zinc (Zn) deficiencies are wide spread in South Asia and Africa. Biofortification of food crops is a viable means of addressing micronutrient deficiencies. Lentil is an important pulse crop that provides affordable source of proteins, minerals, fibre and carbohydrates for micronutrient deficient countries. An association mapping (AM) panel of 96 diverse lentil genotypes from India and Mediterranean region was evaluated for three seasons and genotyped using 80 polymorphic simple-sequence repeat (SSR) markers for identification of the markers associated with grain Fe and Zn concentrations. A Bayesian model based clustering identified five subpopulations, adequately explaining the genetic structure of the AM panel. The linkage disequilibrium (LD) analysis using mixed linear model (MLM) identified two SSR markers, GLLC 106 and GLLC 108, associated with grain Fe concentration explaining 17% and 6% phenotypic variation, respectively and three SSR markers (PBALC 364, PBALC 92 and GLLC592) associated with grain Zn concentration, explaining 6%, 8% and 13% phenotypic variation, respectively. The identified SSRs exhibited consistent performance across three seasons and have potential for utilization in lentil molecular breeding programme.
This is a preview of subscription content, access via your institution.





Similar content being viewed by others
References
Aldemir S., AteÅ D., Temel H. Y., YaÄmur B., Alsaleh A., Kahriman A. et al. 2017 QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turk. J. Agric. For.Ā 41, 1ā13.
Anandan A., Mahender A., Pradhan S. K. and Ali J. 2016 Population structure, diversity and trait association analysis in rice (Oryza sativaĀ L.) germplasm for early seedling vigor (ESV) using trait linked SSR markers. PLoS OneĀ 11, e0152406.
Andeden E. E., Baloch F. S., Cakir E., Tpklu F. and Ozkan H. 2015 Development, characterization and mapping of microsatellite markers for lentil (Lens culinaris Medik.) Plant Breed. 134, 589ā598
Anuradha N., Satyavathi C. T., Bharadwaj C., Nepolean T., Sankar S. M., Singh S. P. et al. 2017 Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front. Plant Sci.Ā 8, 412.
Arumuganathan K. and Earle E. D. 1991 Nuclear DNA content of some important plant species. Plant Mol. Biol.Ā 9, 208ā218.
Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y. and Buckler E. S. 2007 TASSEL: software for association mapping of complex traits in diverse samples. BioinformaticsĀ 23, 2633ā2635.
Chao S., Dubcovsky J., Dvorak J., Luo M., Baenziger S. P., Matnyazov R. et al. 2010 Population and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom.Ā 11, 727ā744.
Diapari M., Sindhu A., Bett K., Deokar A., Warkentin T. D. and Taran B. 2014 Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicerarietinum L.). Genomics 57, 459ā468.
Diapari M., Sindhu A., Warkentin T. D., Bett K. and Tarāan B. 2015 Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol. Breed.Ā 35, 30.
Dikshit H. K., Singh A., Singh D., Aski M. S., Prakash P., Jain N., Meena S., Kumar S. and Sarker A. 2015 Genetic diversity in Lens species revealed by EST and genomic simple sequence repeat analysis. PLoS OneĀ 10, e0138101.
Earl D. A. and VonHoldt B. M. 2012 Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Res.Ā 4, 359ā361.
Farnir F., Coppieters W., Arranz J. -J., Berzi P., Cambisano N., Grisart B. et al. 2000 Extensive genome-wide linkage disequilibrium in cattle. Genome Res.Ā 10, 220ā227.
Flint-Garcia S. A., Thornsberry J. M. and Buckler E. S. 2003 Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol.Ā 54, 357ā374.
Flint-Garcia S. A., Thuillet A. C., Yu J., Pressoir G., Romero S. M., Mitchell S. E. et al. 2005 Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J.Ā 44, 1054ā1064.
Grusak M. A. 2009 Nutritional and health-beneficial quality. In The Lentil: Botany, production and uses (ed. W. Erskine, F. Muehlbauer, A. Sarker and B. Sharma), pp. 368ā390. Oxford, UK.
Gupta M., Verma B., Kumar N., Chahota R. K., Rathour R., Sharma S. K. et al. 2012 Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. J. Genet.Ā 91, 279ā287.
Gupta S., Kumari K., Muthamilarasan M., Parida S. K. and Prasad M. 2014 Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Rep.Ā 33, 881ā893.
Hamwieh A., Udupa S. M., Choumane W., Sarker A., Dreyer F., Jung C. et al. 2005 A genetic linkage map of Lens sp. Based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor. Appl. Genet.Ā 110, 669ā677.
Hamwieh A., Udupa S. M., Sarkar A., Jung C. and Baum M. 2009 Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed. Sci.Ā 59, 77ā86.
Hill W. G. and Robertson A. 1968 Linkage disequilibrium in finite populations. Theor. Appl. Genet.Ā 38, 226ā231.
Jain N., Dikshit H. K., Singh D., Singh A. and Kumar H. 2013 Discovery of EST-derived microsatellite primers in the legumeĀ Lens culinarisĀ (Fabaceae). Appl. Pl. Sci.Ā 1, 1200539.
Kaur S., Cogan N. O. I., Pembleton L. W., Shinozuka M., Savin K. W., Materne M. et al. 2011 Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genom.Ā 12, 265.
Kaur S., Cogan N. O. I., Stephens A., Noy D., Butsch M., Forster J. W. et al. 2014 ESTāSNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor. Appl. Genet.Ā 127, 703ā713.
Khazaei H., Caron C. T., Fedoruk M., Diapari M., Vandenberg A., Coyne C. J. et al. 2016 Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the worldās agro-ecological zones. Front. Plant Sci.Ā 7, 1093.
Khazaei H., Podder R., Caron C. T., Kundu S. S., Diapari M., Vandenberg A. and Bett K. E. 2017 Markerātrait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant GenomĀ 10, 2.
Körber N., Bus A., Li J., Parkin I. A. P., Wittkop B., Snowdon R. J. et al. 2016 Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus. Front. Plant Sci.  7, 386.
Kumar H., Dikshit H. K., Singh A., Jain N., Kumari J., Singh A. M. et al. 2014 Characterization of grain iron and zinc in lentil (Lens culinaris Medikus culinaris) and analysis of their genetic diversity using SSR markers. Aust. J. Crop Sci.Ā 8, 1005ā1012.
Kumar J., Kumar S., Sarker A. and Singh N. P. 2018 Analysis of genetic variability and genotype\(\times \) environment interactions for iron and zinc content among diverse genotypes of lentil.Ā J. Food Sci. Tech.Ā 55, 3592ā3605.
Kumar S., Rajendran K., Kumar J., Hamwieh A. and Baum M. 2015 Current knowledge in lentil genomics and its application for crop improvement.Ā Front. Plant Sci.Ā 6, 78.
Mamo B. E., Barber B. L. and Steffenson B. J. 2014 Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J. Cereal Sci.Ā 60, 497ā506.
Murray M. and Thompson W. 1980. The isolation of high molecular weight plant DNA. Nucleic Acids Res.Ā 8, 4321ā4325.
Nachimuthu V. V., Muthurajan R., Duraialaguraja S., Sivakami R., Pandian B. A., Ponniah G. et al. 2015 Analysis of population structure and genetic diversity in rice germplasm using SSR markers: an initiative towards association mapping of agronomic traits inĀ Oryza sativa.Ā RiceĀ 8, 1.
Pritchard J. K., Stephens M., Rosenberg N. A. and Donnelly P. 2000 Association mapping in structured populations. Am. J. Hum. Genet.Ā 67, 170ā181.
Roy S., Ray B. P., Sarker A. and Das S. C. 2015. DNA fingerprinting and genetic diversity in lentil germplasm using SSR markers. Asian J. Conserv. Biol.Ā 4, 109ā115.
Rubeena F. R. and Taylor P. W. J. 2003 Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor. Appl. Genet.Ā 107, 910ā916.
Saha G. C., Sarker A., Chen W., Vandemark G. J. and Muehlbauer F. J. 2010 Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Sci.Ā 50, 1831ā1839.
Saha G. C., Sarker A., Chen W., Vandemark G. J. and Muehlbauer F. J. 2013 Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik. Int. J. Agron.Ā 2013. Article ID 618926.
Sarker A. and Kumar S. 2011 Lentils in production and food systems in West Asia and Africa. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria. Grain Leg.Ā 57, 46ā48.
Singh A., Sharma V., Dikshit H. K., Aski M., Kumar H., Thirunavukkarasu N. et al. 2017 Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris).Ā PLoS OneĀ 12, e0188296.
Singh D., Chonkar P. K. and Dwivedi B. S. 2005 Manual on soil, plant and water analysis. Westville Publishers, New Delhi.
Srivastava R. P. and Vasishtha H. 2012 Saponins and lectins of indian chickpeas (Cicer arietinum) and lentils (Lens culinaris). Ind. J. Agric. Biochem.Ā 25, 44ā47.
Sudheesh S., Rodda M. S., Davidson J., Javid M., Stephens A., Slater A. T. et al. 2016 SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil. Front. Plant Sci.Ā 7, 1604.
Sun X., Du Z., Ren J., Amombo E., Hu T. and Fu J. 2015 Association of SSR markers with functional traits from heat stress in diverse tall fescue accessions. BMC Plant Biol.Ā 15, 116.
Tadesse W., Ogbonnaya F. C., Jighly A., Sanchez-Garcia M., Sohail Q., Rajaram S. et al. 2015 Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes.Ā PLoS OneĀ 10, e0141339.
Temel H. Y., Gƶl D., Akkale H. B. K., Kahriman A. and Tanyolac M. B. 2015 Single nucleotide polymorphism discovery through Illumina-based transcriptome sequencing and mapping in lentil. Turk. J. Agric. For. 39, 470ā488.
Tullu A., Tarāan B., Warkentin T. and Vandenberg A. 2008 Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci. 48, 2254ā2264.
Yu J., Arbelbide M. and Bernardo R. 2005 Power of in silico QTL mapping from phenotypic, pedigree and marker data in a hybrid breeding program. Theor. Appl. Genet. 110, 1061ā1067
Weir B. S. and Hill W. G. 2002 Estimating F-statistics.Ā Ann. Rev. Genet.Ā 36, 721ā750.
Yu J. and Buckler E. S. 2006 Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol.Ā 17, 155ā160.
Zhu C., Gore M., Buckler E. S. and Yu J. 2008 Status and prospects of association mapping in plants. Plant Genomics 1, 5ā20.
Acknowledgements
We thank Head, Division of Genetics, Joint Director Research and Director, IARI, New Delhi for providing the necessary research facilities. The germplasm collections provided by NBPGR, New Delhi and ICARDA, Aleppo Syria is also gratefully acknowledged. This study was partially supported by Harvest Plus: Lentil Biofortification project by ICARDA and in-house project by ICAR-IARI, New Delhi.
Author information
Authors and Affiliations
Corresponding author
Additional information
Corresponding editor: Arun Joshi
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kumar, H., Singh, A., Dikshit, H.K. et al. Genetic dissection of grain iron and zinc concentrations in lentil (Lens culinaris Medik.). J Genet 98, 66 (2019). https://doi.org/10.1007/s12041-019-1112-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12041-019-1112-3