Skip to main content

Genetic dissection of grain iron and zinc concentrations in lentil (Lens culinaris Medik.)

Abstract

Iron (Fe) and zinc (Zn) deficiencies are wide spread in South Asia and Africa. Biofortification of food crops is a viable means of addressing micronutrient deficiencies. Lentil is an important pulse crop that provides affordable source of proteins, minerals, fibre and carbohydrates for micronutrient deficient countries. An association mapping (AM) panel of 96 diverse lentil genotypes from India and Mediterranean region was evaluated for three seasons and genotyped using 80 polymorphic simple-sequence repeat (SSR) markers for identification of the markers associated with grain Fe and Zn concentrations. A Bayesian model based clustering identified five subpopulations, adequately explaining the genetic structure of the AM panel. The linkage disequilibrium (LD) analysis using mixed linear model (MLM) identified two SSR markers, GLLC 106 and GLLC 108, associated with grain Fe concentration explaining 17% and 6% phenotypic variation, respectively and three SSR markers (PBALC 364, PBALC 92 and GLLC592) associated with grain Zn concentration, explaining 6%, 8% and 13% phenotypic variation, respectively. The identified SSRs exhibited consistent performance across three seasons and have potential for utilization in lentil molecular breeding programme.

This is a preview of subscription content, access via your institution.

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldemir S., Ateş D., Temel H. Y., Yağmur B., Alsaleh A., Kahriman A. et al. 2017 QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turk. J. Agric. For. 41, 1–13.

    Article  Google Scholar 

  • Anandan A., Mahender A., Pradhan S. K. and Ali J. 2016 Population structure, diversity and trait association analysis in rice (Oryza sativa L.) germplasm for early seedling vigor (ESV) using trait linked SSR markers. PLoS One 11, e0152406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andeden E. E., Baloch F. S., Cakir E., Tpklu F. and Ozkan H. 2015 Development, characterization and mapping of microsatellite markers for lentil (Lens culinaris Medik.) Plant Breed. 134, 589–598

    Article  CAS  Google Scholar 

  • Anuradha N., Satyavathi C. T., Bharadwaj C., Nepolean T., Sankar S. M., Singh S. P. et al. 2017 Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front. Plant Sci8, 412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumuganathan K. and Earle E. D. 1991 Nuclear DNA content of some important plant species. Plant Mol. Biol. 9, 208–218.

    Article  CAS  Google Scholar 

  • Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y. and Buckler E. S. 2007 TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635.

    Article  CAS  Google Scholar 

  • Chao S., Dubcovsky J., Dvorak J., Luo M., Baenziger S. P., Matnyazov R. et al. 2010 Population and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom. 11, 727–744.

    Article  CAS  Google Scholar 

  • Diapari M., Sindhu A., Bett K., Deokar A., Warkentin T. D. and Taran B. 2014 Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicerarietinum L.). Genomics 57, 459–468.

  • Diapari M., Sindhu A., Warkentin T. D., Bett K. and Tar’an B. 2015 Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol. Breed. 35, 30.

    Article  Google Scholar 

  • Dikshit H. K., Singh A., Singh D., Aski M. S., Prakash P., Jain N., Meena S., Kumar S. and Sarker A. 2015 Genetic diversity in Lens species revealed by EST and genomic simple sequence repeat analysis. PLoS One 10, e0138101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl D. A. and VonHoldt B. M. 2012 Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361.

    Article  Google Scholar 

  • Farnir F., Coppieters W., Arranz J. -J., Berzi P., Cambisano N., Grisart B. et al. 2000 Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 10, 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia S. A., Thornsberry J. M. and Buckler E. S. 2003 Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374.

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia S. A., Thuillet A. C., Yu J., Pressoir G., Romero S. M., Mitchell S. E. et al. 2005 Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 44, 1054–1064.

    Article  CAS  PubMed  Google Scholar 

  • Grusak M. A. 2009 Nutritional and health-beneficial quality. In The Lentil: Botany, production and uses (ed. W. Erskine, F. Muehlbauer, A. Sarker and B. Sharma), pp. 368–390. Oxford, UK.

  • Gupta M., Verma B., Kumar N., Chahota R. K., Rathour R., Sharma S. K. et al. 2012 Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. J. Genet. 91, 279–287.

    Article  CAS  PubMed  Google Scholar 

  • Gupta S., Kumari K., Muthamilarasan M., Parida S. K. and Prasad M. 2014 Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Rep. 33, 881–893.

    Article  CAS  PubMed  Google Scholar 

  • Hamwieh A., Udupa S. M., Choumane W., Sarker A., Dreyer F., Jung C. et al. 2005 A genetic linkage map of Lens sp. Based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor. Appl. Genet. 110, 669–677.

    Article  CAS  PubMed  Google Scholar 

  • Hamwieh A., Udupa S. M., Sarkar A., Jung C. and Baum M. 2009 Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed. Sci. 59, 77–86.

    Article  CAS  Google Scholar 

  • Hill W. G. and Robertson A. 1968 Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Jain N., Dikshit H. K., Singh D., Singh A. and Kumar H. 2013 Discovery of EST-derived microsatellite primers in the legume Lens culinaris (Fabaceae). Appl. Pl. Sci. 1, 1200539.

    Article  Google Scholar 

  • Kaur S., Cogan N. O. I., Pembleton L. W., Shinozuka M., Savin K. W., Materne M. et al. 2011 Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genom. 12, 265.

    Article  CAS  Google Scholar 

  • Kaur S., Cogan N. O. I., Stephens A., Noy D., Butsch M., Forster J. W. et al. 2014 EST–SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor. Appl. Genet. 127, 703–713.

    Article  CAS  PubMed  Google Scholar 

  • Khazaei H., Caron C. T., Fedoruk M., Diapari M., Vandenberg A., Coyne C. J. et al. 2016 Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones. Front. Plant Sci. 7, 1093.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khazaei H., Podder R., Caron C. T., Kundu S. S., Diapari M., Vandenberg A. and Bett K. E. 2017 Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genom 10, 2.

    Article  Google Scholar 

  • Körber N., Bus A., Li J., Parkin I. A. P., Wittkop B., Snowdon R. J. et al. 2016 Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napusFront. Plant Sci.  7, 386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar H., Dikshit H. K., Singh A., Jain N., Kumari J., Singh A. M. et al. 2014 Characterization of grain iron and zinc in lentil (Lens culinaris Medikus culinaris) and analysis of their genetic diversity using SSR markers. Aust. J. Crop Sci. 8, 1005–1012.

    CAS  Google Scholar 

  • Kumar J., Kumar S., Sarker A. and Singh N. P. 2018 Analysis of genetic variability and genotype\(\times \) environment interactions for iron and zinc content among diverse genotypes of lentil. J. Food Sci. Tech. 55, 3592–3605.

    CAS  Google Scholar 

  • Kumar S., Rajendran K., Kumar J., Hamwieh A. and Baum M. 2015 Current knowledge in lentil genomics and its application for crop improvement. Front. Plant Sci. 6, 78.

    PubMed  PubMed Central  Google Scholar 

  • Mamo B. E., Barber B. L. and Steffenson B. J. 2014 Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J. Cereal Sci. 60, 497–506.

    Article  CAS  Google Scholar 

  • Murray M. and Thompson W. 1980. The isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachimuthu V. V., Muthurajan R., Duraialaguraja S., Sivakami R., Pandian B. A., Ponniah G. et al. 2015 Analysis of population structure and genetic diversity in rice germplasm using SSR markers: an initiative towards association mapping of agronomic traits in Oryza sativaRice 8, 1.

    Article  Google Scholar 

  • Pritchard J. K., Stephens M., Rosenberg N. A. and Donnelly P. 2000 Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S., Ray B. P., Sarker A. and Das S. C. 2015. DNA fingerprinting and genetic diversity in lentil germplasm using SSR markers. Asian J. Conserv. Biol. 4, 109–115.

    Google Scholar 

  • Rubeena F. R. and Taylor P. W. J. 2003 Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor. Appl. Genet. 107, 910–916.

    Article  CAS  PubMed  Google Scholar 

  • Saha G. C., Sarker A., Chen W., Vandemark G. J. and Muehlbauer F. J. 2010 Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Sci. 50, 1831–1839.

    Article  CAS  Google Scholar 

  • Saha G. C., Sarker A., Chen W., Vandemark G. J. and Muehlbauer F. J. 2013 Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik. Int. J. Agron. 2013. Article ID 618926.

  • Sarker A. and Kumar S. 2011 Lentils in production and food systems in West Asia and Africa. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria. Grain Leg. 57, 46–48.

    Google Scholar 

  • Singh A., Sharma V., Dikshit H. K., Aski M., Kumar H., Thirunavukkarasu N. et al. 2017 Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 12, e0188296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh D., Chonkar P. K. and Dwivedi B. S. 2005 Manual on soil, plant and water analysis. Westville Publishers, New Delhi.

  • Srivastava R. P. and Vasishtha H. 2012 Saponins and lectins of indian chickpeas (Cicer arietinum) and lentils (Lens culinaris). Ind. J. Agric. Biochem. 25, 44–47.

    CAS  Google Scholar 

  • Sudheesh S., Rodda M. S., Davidson J., Javid M., Stephens A., Slater A. T. et al. 2016 SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil. Front. Plant Sci. 7, 1604.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun X., Du Z., Ren J., Amombo E., Hu T. and Fu J. 2015 Association of SSR markers with functional traits from heat stress in diverse tall fescue accessions. BMC Plant Biol. 15, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadesse W., Ogbonnaya F. C., Jighly A., Sanchez-Garcia M., Sohail Q., Rajaram S. et al. 2015 Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS One 10, e0141339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temel H. Y., Göl D., Akkale H. B. K., Kahriman A. and Tanyolac M. B. 2015 Single nucleotide polymorphism discovery through Illumina-based transcriptome sequencing and mapping in lentil. Turk. J. Agric. For. 39, 470–488.

  • Tullu A., Tar’an B., Warkentin T. and Vandenberg A. 2008 Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci. 48, 2254–2264.

    Article  Google Scholar 

  • Yu J., Arbelbide M. and Bernardo R. 2005 Power of in silico QTL mapping from phenotypic, pedigree and marker data in a hybrid breeding program. Theor. Appl. Genet. 110, 1061–1067

  • Weir B. S. and Hill W. G. 2002 Estimating F-statistics. Ann. Rev. Genet. 36, 721–750.

    Article  CAS  PubMed  Google Scholar 

  • Yu J. and Buckler E. S. 2006 Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 17, 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Zhu C., Gore M., Buckler E. S. and Yu J. 2008 Status and prospects of association mapping in plants. Plant Genomics 1, 5–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Head, Division of Genetics, Joint Director Research and Director, IARI, New Delhi for providing the necessary research facilities. The germplasm collections provided by NBPGR, New Delhi and ICARDA, Aleppo Syria is also gratefully acknowledged. This study was partially supported by Harvest Plus: Lentil Biofortification project by ICARDA and in-house project by ICAR-IARI, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Dikshit.

Additional information

Corresponding editor: Arun Joshi

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 2454 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Singh, A., Dikshit, H.K. et al. Genetic dissection of grain iron and zinc concentrations in lentil (Lens culinaris Medik.). J Genet 98, 66 (2019). https://doi.org/10.1007/s12041-019-1112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1112-3

Keyword