Advertisement

Journal of Genetics

, 98:55 | Cite as

Development of a drought stress-resistant rice restorer line through Oryza sativa–rufipogon hybridization

  • Yuan Luo
  • Liangyan Lao
  • Bin Ai
  • Meng Zhang
  • Jiankun XieEmail author
  • Fantao ZhangEmail author
Research Note

Abstract

Restorer line F6 (Oryza sativa L. ssp. indica) has been widely used in hybrid rice breeding systems in southern China. However, line F6 is susceptible to drought stress, which restricts its utilization in many areas. Dongxiang wild rice (DXWR, Oryza rufipogon Griff.) has strong drought stress resistance, but the molecular factors responsible for drought resistance in DXWR remain unknown. In this study, we used the combination of phenotypic selection and molecular marker-assisted selection (MAS) to improve the drought stress resistance of line F6 by introgression of qSDT12-2, a large effect drought stress-related quantitative trait locus identified in DXWR. Molecular MAS was carried out using linked marker RM1226, which is associated with qSDT12-2. Genomic background assessment was performed using 112 polymorphic markers. Finally, a stable drought stress-resistant backcross inbred line (BIL) was developed from a \(\hbox {BC}_{{5}} \hbox {F}_{{5}}\) population, termed BIL627. Genetic constitution analysis revealed that the genome of BIL627 is almost identical (99.1%) to that of the restorer line F6. Further, BIL627 showed no yield penalty and no decrease in restoration ability under normal conditions. Taken together, our findings reveal the intrinsic value of using genetic resources present in wild species of Oryza to improve undesirable traits found in cultivated rice.

Keywords

drought stress resistance genetic resource interspecific hybridization rice improvement wild rice 

Notes

Acknowledgements

We would like to thank all the members of the project who contributed to the field work. This research was supported by the National Natural Science Foundation of China (31660386), the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars (20171BCB23040), the Natural Science Foundation of Jiangxi Province, China (20181BAB204010), the Foundation of Jiangxi Educational Committee (GJJ170193) and the Sponsored Programme for Distinguished Young Scholars at Jiangxi Normal University.

Supplementary material

12041_2019_1105_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (xlsx 17 KB)

References

  1. Bouman B. A. M., Peng S., Castañeda A. R. and Visperas R. M. 2005 Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manag. 74, 87–105.CrossRefGoogle Scholar
  2. Chakraborty S. and Newton A. C. 2011 Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14.CrossRefGoogle Scholar
  3. Chen D. H. and Ronald P. C. 1999 A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17, 53–57.CrossRefGoogle Scholar
  4. Chen X. R., Yang K. S., Fu J. R., Zhu C. L., Peng X. S., He X. P. et al. 2008 Identification and genetic analysis of fertility restoration ability in Dongxiang wild rice (Oryza rufipogon). Rice Sci. 15, 21–28.CrossRefGoogle Scholar
  5. Du B., Zhang W., Liu B., Hu J., Wei Z., Shi Z. et al. 2009 Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc. Natl. Acad. Sci. USA 106, 22163–22168.CrossRefGoogle Scholar
  6. Du H., Wu N., Fu J., Wang S. P., Li X. H., Xiao J. H. et al. 2012 A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 63, 6467–6480.CrossRefGoogle Scholar
  7. Fan X. R., Jia L. J., Li Y. L., Smith S. J., Miller A. J. and Shen Q. R. 2007 Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J. Exp. Bot. 58, 1729–1740.CrossRefGoogle Scholar
  8. Hu J., Xiao C. and He Y. 2016 Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice 9, 30.CrossRefGoogle Scholar
  9. Jeuken M. J. and Lindhout P. 2004 The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor. Appl. Genet. 109, 394–401.CrossRefGoogle Scholar
  10. Li S. C., Wang S. Q., Deng Q. M., Zheng A. P., Zhu J., Liu H. N. et al. 2012 Identification of genome-wide variations among three elite restorer lines for hybrid-rice. PLoS One 7, e30952.CrossRefGoogle Scholar
  11. Mahmoud A. A., Sukumar S. and Krishnan H. B. 2008 Interspecific rice hybrid of Oryza sativa \(\times \) Oryza nivara reveals a significant increase in seed protein content. J. Agric. Food Chem. 56, 476–482.CrossRefGoogle Scholar
  12. Mammadov J., Buyyarapu R., Guttikonda S. K., Parliament K., Abdurakhmonov I. Y. and Kumpatla S. P. 2018 Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front. Plant Sci. 9, 886.CrossRefGoogle Scholar
  13. Mao D. H., Yu L., Chen D. Z., Li L. Y., Zhu Y. X., Xiao Y. Q. et al. 2015 Multiple cold resistance loci confer the high cold resistance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor. Appl. Genet. 128, 1359–1371.CrossRefGoogle Scholar
  14. Nie X. H., Tu J. L., Wang B., Zhou X. F. and Lin Z. X. 2015 A BIL population derived from G. hirsutum and G. barbadense provides a resource for cotton genetics and breeding. PLoS One 10, e0141064.CrossRefGoogle Scholar
  15. Ruane J. and Sonnino A. 2011 Agricultural biotechnologies in developing countries and their possible contribution to food security. J. Biotechnol. 156, 356–363.CrossRefGoogle Scholar
  16. Shanker A. K., Maheswari M., Yadav S. K., Desai S., Bhanu D., Attal N. B. et al. 2014 Drought stress responses in crops. Funct. Integr. Genom. 14, 11–22.CrossRefGoogle Scholar
  17. Wang Y., Cao L., Zhang Y., Cao C., Liu F., Huang F. et al. 2015 Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J. Exp. Bot. 66, 6035–6045.CrossRefGoogle Scholar
  18. Xiao Y. Q., Chen D. Z., Zhang J. C., Wu W. C., Hu L. X., Pi Y. H. et al. 2004 Breeding and application of ‘jinyou F6’-a high yield and quality hybrid early rice variety. Acta. Agric. Jiangxi 16, 6–10.Google Scholar
  19. Zhang X., Zhou S. X., Fu Y. C., Su Z., Wang X. K. and Sun C. Q. 2006 Identification of a drought resistant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol. Biol. 62, 247–259.CrossRefGoogle Scholar
  20. Zhang F. T., Zhang L. X., Cui F. L., Luo X. D., Zhou Y. and Xie J. K. 2015 Identification of novel insertion-deletion markers for Dongxiang wild rice (Oryza rufipogon Griff.) using high-throughput sequencing technology. J. Genet. 94, e51–e55.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Life SciencesJiangxi Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations