Skip to main content

Advertisement

Log in

Evolutionary dynamics models in biometrical genetics supports QTL \(\times \) environment interactions

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The process of development of quantitative trait locus (QTL) involves interactions between many factors, both environmental and genetic, in which many genes interact often in no additive pathways together and with environment. Integration of the mathematical, statistical and biological aspects of these subjects has made important and interesting results. In this review, mathematical methods offered to study the QTL \(\times \) environment interactions. The topic is circumscribed, going from basic selection equations to models of evolution of QTLs. Discrete and continuous time mathematical models and subsequently, QTL modelling were introduced with and without environmental interactions. The mathematical models derived here showed that the gradients of mean fitness which have revealed in studies by many researchers had a basic role in mathematical genetics, evolutionary aspects of biometrical genetics and QTL analysis. QTL \(\times \) environment interactions were studied mathematically including fitness components too. It was revealed that QTL \(\times \) environment interactions in fitness could generate a balancing selection. Also, QTL analysis could be used to calculate the geometry of the phenotype landscape. In this paper, models applied in biometrical genetics corresponds to QTL analysis and matched with results from other researchers. The originality of this synthesis is the evolutionary modelling of QTL \(\times \) environment interactions which can be used to investigate the extinction or stability of a population. Also to emphasize that although some scientific subjects like Brownian motion, quantum mechanics, general relativity, differential geometry, and evolutionary biometrical genetics were apparently different subjects, but the mathematical models were the backbone of these branches of science. This implies that such matters in nature have probably common and elegant basis. The perspective of the subject of this paper in future will be a new and interesting branch of interdisciplinary science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akin E. 1979 The geometry of population genetics. Lecture notes in biomathematics, vol. 31, pp. 1–211. Springer.

  • Akin E. 1980 Domination or equilibrium. Math. Biosci. 50, 239–250.

    Article  Google Scholar 

  • Akin E. 1982 Cycling in simple genetic systems. J. Math. Biol. 13, 305–324.

    Article  Google Scholar 

  • Akin E. 1987 Cycling in simple genetic systems: II. The symmetric cases. Lecture notes in economics and mathematical systems, vol. 287, pp. 139–153. Springer.

  • Akin E. 1990 The differential geometry of population genetics and evolutionary games. Mathematical and Statistical developments of evolutionary theory, pp. 1–93. Kluwer Academic Publishers, Dordrecht.

  • Angilletta M. 2009 Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Aronson D. G. and Weinberger H. F. 1978 Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76.

    Article  Google Scholar 

  • Barton N. H. and Keightley P. D. 2002 Understanding quantitative genetic variation. Nat. Rev. Genet. 3, 11–21.

    Article  CAS  Google Scholar 

  • Browne R. A. and Wanigasekera G. 2000 Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. J. Exp. Mar. Biol. Ecol. 244, 29–44.

    Article  Google Scholar 

  • Bulmer M. G. 1980 The mathematical theory of quantitative genetics. Clarendon Press, Oxford.

    Google Scholar 

  • Bürger R. and Bomze I. M. 1996 Stationary distributions under mutation-selection balance: structure and properties. Adv. Appl. Prob. 28, 227–251.

    Article  Google Scholar 

  • Bürger R. 2000 The mathematical theory of selection, recombination, and mutation. Wiley, Chichester.

    Google Scholar 

  • Bürger R. and Krall C. 2004 Quantitative-genetic models and changing environments. In Evolutionary conservation biology (ed. R. Ferrière, U. Dieckmann and D. Couvet), pp. 171–187. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Bürger R. 2011 Some mathematical models in evolutionary genetics, pp. 67–89. Springer, Berlin.

  • Coppersmith S. N., Blank R. D. and Kadanoff L. P. 1999 Analysis of a population genetics model with mutation, selection, and pleiotropy. J. Stat. Phys. 97, 429–457.

    Article  Google Scholar 

  • Erickson D., Fenster C. B., Stenoien H. K. and Price D. 2004 Quantitative trait locus analyses and the study of evolutionary process. Mol. Ecol. 13, 2505–2522.

    Article  CAS  Google Scholar 

  • Ewens W. J. 2003 Mathematical population genetics, 2nd edition. Springer, New York.

    Google Scholar 

  • Falconer D. S. 1952 The problem of environment and selection. Am. Nat. 86, 293–298.

    Article  Google Scholar 

  • Falconer D. S. 1981 Introduction to quantitative genetics, 2nd edition. Longman, N.Y.

    Google Scholar 

  • Falconer D. S. and MacKay T. F. C. 1996 Introduction to quantitative genetics, 4th edition. Longman, Essex.

    Google Scholar 

  • Fisher R. A. 1937 The advance of advantageous genes. Ann. Eugen. 7, 355–369.

    Article  Google Scholar 

  • Gillespie J. H. and Turelli M. 1989 Genotype-environment interactions and the maintenance of polygenic variation. Genetics 141, 129–138.

    Google Scholar 

  • Gimelfarb A. 1989 Genotypic variation for a quantitative character maintained under stabilizing selection without mutations: epistasis. Genetics 123, 217–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldgar D. 1990 Multipoint analysis of human quantitative genetic-variation. Am. J. Hum. Genet. 47, 957–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffing B. 1960 Theoretical consequences of truncation selection based on the individual phenotype. Aust. J. Biol. Sci. 13, 309–343.

    Google Scholar 

  • James F. C. and Kimura M. 1970 An introduction to population genetics theory. Blackburn Press, New Jersey.

    Google Scholar 

  • Kelly J. K. 2009 Connecting QTLs to the G-matrix of evolutionary quantitative genetics. Evolution 63, 813–825.

    Article  Google Scholar 

  • Kimura M. 1965 A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc. Natl. Acad. Sci. USA 54, 731–736.

    Article  CAS  Google Scholar 

  • Kolmogorov A., Petrovsky I. and Piscounov N. 1937 Étude de l’équation de la diffusion avec croissance de la quantité de matiére et son application a un probléme biologique. Bull. Univ. Mosc. Ser. Int. Sect. A. 1, 1–25.

    Google Scholar 

  • Lande R. 1976 The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26, 221–235.

    Article  Google Scholar 

  • Lande R. 1979 Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33, 402–416.

  • Lande R. 1980 The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94, 203–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lande R. and Arnold S. J. 1983 The measurement of selection on correlated characters. Evolution 37, 1210–1226.

    Article  Google Scholar 

  • Lande R. 2014 Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment. J. Evol. Biol. 27, 866–875.

    Article  CAS  Google Scholar 

  • Lynch M. and Walsh B. 1998 Genetics and analysis of quantitative characters. Sinauer associates, Sunderland.

    Google Scholar 

  • Mackay T. F. C. 2001 The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339.

    Article  CAS  Google Scholar 

  • Mackay T. F. C. 2004 Genetic dissection of quantitative traits. In The evolution of population biology (ed. R. S. Singh and M. K. Uyenoyama), pp. 51–73. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Miles C. and Wayne M. 2008 Quantitative trait locus (QTL) analysis. Nat. Edu. 1. (https://www.nature.com/scitable/topicpage/quantitative-trait-locus-qtl-analysis-53904).

  • Nagylaki T. 1993 The evolution of multilocus systems under weak selection. Genetics 134, 627–647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norman M. F. 1975 Approximation of stochastic processes by Gaussian diffusion and applications to Wright-Fisher genetic models, SIAM. J. Appl. Math. 29, 225–242.

    Article  Google Scholar 

  • Nowak M. A. 2006 Evolutionary dynamics: exploring the equations of life. Harvard University Press, Cambridge.

    Book  Google Scholar 

  • Rice H. S. 2002 A general population genetic theory for the evolution of developmental interactions. Proc. Natl. Acad. Sci. USA 99, 15518–15523.

    Article  CAS  Google Scholar 

  • Robertson A. 1959 The sampling variance of the genetic correlation coefficient. Biometrics 15, 469–485.

    Article  Google Scholar 

  • Robertson A. 1966 A mathematical model of the culling process in dairy cattle. Anim. Prod. 8, 95–108.

    Google Scholar 

  • Robertson A. 1968 The spectrum of genetic variation. In Population biology and evolution (ed. R. C. Lewontin), pp. 5–16. University Press, Syracuse.

    Google Scholar 

  • Robertson D. S. 1985 A possible technique for isolating genic DNA for quantitative traits in plants. J. Theor. Biol. 117, 1–10.

    Article  CAS  Google Scholar 

  • Rodney M. 2001 Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Rev. Genet. 2, 370–381.

    Article  Google Scholar 

  • Shahshahani S. 1979 A new mathematical framework for the study of linkage and selection. Mem. Am. Math. Soc17, ix+34. https://doi.org/10.1090/memo/0211.

  • Svirezhev Yu. M. 1972 Optimality principles in population genetics. In Studies in theoretical genetics, pp. 86–102. Institute of Cytology and Genetics, Novisibirsk (In Russian).

    Google Scholar 

  • Tahira T., Kukita Y., Higasa K., Okazaki Y., Yoshinaga A. and Hayashi K. 2009 Estimation of SNP allele frequencies by SSCP analysis of pooled DNA. Methods Mol. Biol. 578, 193–207.

    Article  CAS  Google Scholar 

  • Tanksley S. D. 1993 Mapping polygenes. Annu. Rev. Genet. 27, 205–233.

    Article  CAS  Google Scholar 

  • Via S. and Lande R. 1985 Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522.

    Article  Google Scholar 

  • Waxman D. and Peck J. R. 1998 Pleiotropy and the preservation of perfection. Science 279, 1210–1213.

    Article  CAS  Google Scholar 

  • Wright S. 1932 The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. 6th Int. Cong. Genet. 1, 356–366.

    Google Scholar 

  • Yang J., Hu C., Hu H., Yu R., Xia Z., Ye X. et al. 2008 QTL Network: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24, 721–723.

    Article  Google Scholar 

  • Zhang W. K., Wang Y. J., Luo G. Z., Zhang J. S., He C. Y. and Chen S. Y. 2004 QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor. Appl. Genet. 108, 1131–1139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Prof. Ethan Akin, Department of Mathematics, The City College of New York, USA, for his helpful suggestions on earlier versions of this paper and Prof. Russell Scott Lande, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology for his beneficial assistance. We also thank Prof. Reinhard Bürger, Faculty of Mathematics, University of Vienna, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Fattahi.

Additional information

Corresponding Editor: H. A. Ranganath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi, F., Fakheri, B.A. Evolutionary dynamics models in biometrical genetics supports QTL \(\times \) environment interactions. J Genet 98, 39 (2019). https://doi.org/10.1007/s12041-019-1089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1089-y

Keywords

Navigation