Journal of Genetics

, 98:14 | Cite as

Genetic diversity and population structure of two endemic Cupressus (Cupressaceae) species on the Qinghai-Tibetan plateau

  • Yaru Fu
  • Shaoke Li
  • Qiqiang Guo
  • Weilie Zheng
  • Rui Yang
  • Huie LiEmail author
Research Article


Cupressus gigantea and C. torulosa are ecologically and economically important endemic species of the conifer family Cupressaceae on the Qinghai-Tibetan plateau. C. gigantea was previously classified as a subspecies of C. torulosa because of their similar morphological characteristics and close distribution. In this study, 401 individuals were sampled from 16 populations of the two Cupressus species. The specimens were genotyped using 10 polymorphic microsatellite loci through fluorescence polymerase chain reaction (PCR). The genetic diversity of C. gigantea and C. torulosa populations was generally low, with the highest genetic diversity detected in the population LLS of C. gigantea. Distance-based phylogenetic and principal co-ordinates analyses indicated a clear genetic structures for the 16 populations of the two Cupressus species. Moreover, Mantel test results showed indistinctive correlations between population-pairwise \(F_{\mathrm{st}}\) values and geographic distances, as well as between genetic distances and geographic distances in C. gigantea and C. torulosa, respectively. AMOVA suggested that genetic variation mostly resided within populations. Sixteen natural populations were evidently clustered into two major groups in the constructed neighbour-joining tree. The results demonstrated that C. gigantea and C. torulosa are different Cupressus species. The genetic information provided important theoretical references for conservation and management of the two endangered Cupressus species.


genetic diversity genetic structure microsatellite Cupressus gigantea Cupressus torulosa 



This research was financially supported by the National Natural Science Foundation of China (31460207) and Programme of Collaborative Innovation Center Construction of Research and Development on Tibetan Characteristic Agricultural and Animal Husbandry Resources—plateau ecology, and Promotion Plan of Plateau Basic Ecological Academic Team Ability and Science and technology projects of Guizhou Province (JZ[2014]200211), China.

Supplementary material

12041_2019_1059_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (docx 4105 KB)


  1. Crispo E. and Hendry A. P. 2005 Does time since colonization influence isolation by distance? A meta-analysis. Conser. Genet. 6, 665–682.CrossRefGoogle Scholar
  2. Dubreuil M., Riba M., González-Martínez S. C., Vendramin G. G., Sebastiani F. et al. 2010 Genetic effects of chronic habitat fragmentation revisited: strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am. J. Bot. 97, 303–310.CrossRefGoogle Scholar
  3. Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.CrossRefGoogle Scholar
  4. Excoffier L., Smouse P. E. and Quattro J. M. 1992 Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.PubMedPubMedCentralGoogle Scholar
  5. Fageria M. S. and Rajora O. P. 2014 Effects of silvicultural practices on genetic diversity and population structure of white spruce in Saskatchewan. Tree Genet. Genomes 10, 287–296.CrossRefGoogle Scholar
  6. Farjon A. 2007 In defence of a conifer taxonomy which recognises evolution. Taxon 56, 639–641.CrossRefGoogle Scholar
  7. Felsenstein J. 2004 PHYLIP (Phylogeny Inference Package), version 3.6. Department of genome sciences, University of Washington, Seattle.Google Scholar
  8. Freeland J. R., Kirk H. and Petersen S. 2011 Molecular ecology, 2nd edition. John Wiley, Chichester.CrossRefGoogle Scholar
  9. Geng Y., Cram J. and Zhong Y. 2009 Genetic diversity and population structure of alpine plants endemic to Qinghai-Tibetan Plateau, with implications for conservation under global warming. In Genetic diversity (ed. C. L. Mahoney and D. A. Springer), pp. 213–228. Nova Science Publishers, Hauppauge, NY.Google Scholar
  10. Goudet J. 2002 FSTAT, a program to estimate and test gene diversities and fixation indices. Version University of Lausanne, Lausanne, Switzerland.Google Scholar
  11. Gupta S. K., Sharma P. and Shah S. K. 1992 Constraints on ice sheet thickness over Tibet during the last 40,000 years. J. quarter. Sci. 7, 283–290.CrossRefGoogle Scholar
  12. Hamrick J. L. and Godt M. J. W. 1996a Effects of life history traits on genetic diversity in plant species. Phil. Trans. R. Soc. London. Ser. B: Biol. Sci. 351, 1291–1298.CrossRefGoogle Scholar
  13. Hamrick J. L. and Godt M. J. W. 1996b Conservation genetics of endemic plant species. In Conservation genetics: case histories from nature (ed. J. C. Avise and J. L. Hamrick), pp. 281–304. Chapman and Hall, New York.CrossRefGoogle Scholar
  14. Hao B. Q., Wang L., Mu L. C., Yao L., Zhang R., Mingxia T. et al. 2006 A study of conservation genetics in Cupressus chengiana, an endangered endemic of China, using ISSR markers. Biochem. Genet. 44, 31–45.PubMedGoogle Scholar
  15. Hedrick P. W. 2004 Recent developments in conservation genetics. Forest Ecol. Manag. 197, 3–19.CrossRefGoogle Scholar
  16. Hewitt G. M. 2000 The genetic legacy of the Quaternary iceages. Nature 405, 907–913.CrossRefGoogle Scholar
  17. Hubisz M. J., Falush D., Stephens M. and Pritchard J. K. 2009 Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332.CrossRefGoogle Scholar
  18. IUCN 2016 The IUCN red list of Threatened Species. Version 2016.3 (
  19. Kuhle M. 1988 The Pleistocene glaciation of Tibet and onset of ice age: an autocycle hypothesis. Geographi. J. 17, 581–595.Google Scholar
  20. Kurokochi H., Matsuki Y., Nakajima Y., Fortes M. D., Uy W. H., W. L. Campos et al. 2015 A baseline for the genetic conservation of tropical seagrasses in the western North Pacific under the influence of the Kuroshio Current: the case of Syringodium isoetifolium. Conserv. Genet. 17, 103–110.CrossRefGoogle Scholar
  21. Li Z. H., Xu H. Y. and Zhao G. F. 2013a Isolation and characterization of polymorphic microsatellite loci primers for Cupressus funebris (Cupressaceae). Conserv. Genet. Resour. 5, 307–309.CrossRefGoogle Scholar
  22. Li L., Abbott R. J., Liu B. B., Sun Y. S., Li L. L., Zou J. et al. 2013b Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai-Tibet Plateau. Mol. Ecol. 22, 5237–5255.CrossRefGoogle Scholar
  23. Li S. K., Qian Z. Q., Fu Y. R., Zheng W. L. and Li H. E. 2014 Isolation and characterization of polymorphic microsatellites in the Tibetan cypress Cupressus gigantea using paired-end Illumina shotgun sequencing. Conserv. Genet. Resour. 6, 795–797.CrossRefGoogle Scholar
  24. Liepelt S., Cheddadi R., de Beaulieu J. L., Fady B. Gömöry D., Hussendörfer E et al. 2009 Postglacial range expansion and its genetic imprints in Abies alba (Mill.)—A synthesis from palaeobotanic and genetic data. Rev. Palaeobot. Palynol. 153, 139–149.CrossRefGoogle Scholar
  25. Liu J. Q. and Tian B. 2007 Origin, evolution, and systematics of Himalaya endemic genera. Newslett. Himalayan Bot40, 20–27.Google Scholar
  26. Logan S. A., Phuekvilai P. and Wolff K. 2015 Ancient woodlands in the limelight: delineation and genetic structure of ancient woodland species Tilia cordata and Tilia platyphyllos (Tiliaceae) in the UK. Tree Genet. Genomes 11, 1–12.CrossRefGoogle Scholar
  27. Lu X., Xu H. Y., Li Z. H., Shang H. Y., Adams R. P. and Mao K. 2013 Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers. Biochem. Genet. 52, 181–202.CrossRefGoogle Scholar
  28. Malizia R. A., Cardell D. A., Molli J. S., González S., Guerra P. E., Ricardo J. G. et al. 2000 Volatile constituents of leaf oils from the Cupressacea family: part I. Cupressus macrocarpa Hartw., \(C.\) arizonica Greene and C. torulosa Don Species growing in Argentina. J. Essential Oil Res. 12, 59–63.CrossRefGoogle Scholar
  29. Mantel N. 1967 The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220.PubMedGoogle Scholar
  30. Martín M. A., Mattioni C., Lusini I., Drake F., Cherubini M., Herrera M. A. et al. 2012 Microsatellite development for the relictual conifer Araucaria araucana (Araucariaceae) using next-generation sequencing. Am. J. Bot. 99, e213–e215.CrossRefGoogle Scholar
  31. Mishima K., Hirao T., Watanabe A. and Takata K. 2012 Isolation and characterization of microsatellite markers for Thujopsis dolabrata var. hondai (Cupressaceae). Am. J. Bot. 99, e317–e319.CrossRefGoogle Scholar
  32. Mousadik A. E. and Petit R. J. 1996 High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoret. Applied Genet. 92, 832–839.CrossRefGoogle Scholar
  33. Nybom H. 2004 Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143–1155.CrossRefGoogle Scholar
  34. Page R. D. M. 1996 TreeView: An application to display phylogenetic trees on personal computers. Bioinformatics 12, 357–358.CrossRefGoogle Scholar
  35. Peakall R. and Smouse P. E. 2012 GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539.CrossRefGoogle Scholar
  36. Poudel R. C. 2012 Species delimitation and conservation genetics of Taxus (Taxaceae) along the Hindu Kush-Himalaya region. PhD. dissertation, Kunming Institute of Botany, Chinese Academy of Sciences.Google Scholar
  37. Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  38. Qiu Y. X., Fu C. X. and Comes H. P. 2011 Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogenet. Evol. 59, 225–244.CrossRefGoogle Scholar
  39. Rumeu B., Sosa P. A., Nogales M. and González-Pérez M. A. 2013 Development and characterization of 13 SSR markers for an endangered insular juniper (Juniperus cedrus Webb & Berth.). Conserv. Genet. Resour. 5, 457–459.CrossRefGoogle Scholar
  40. Saitou N. and Nei M. 1987 The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  41. Schaal B. A., Hayworth D. A., Olsen K. M., Rauscher J. T. and Smith W. A. 1998 Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7, 465–474.CrossRefGoogle Scholar
  42. Sebastiani F., Buonamici A., Fineschi S., Racchi M. L., Raddi P., Vendramin G. G. et al. 2005 Novel polymorphic nuclear microsatellites in Cupressus sempervirens L. Mol. Ecol. Notes 5, 393–394.CrossRefGoogle Scholar
  43. Sellappan M., Palanisamy D., Joghee N. and Bhojraj S. 2007 Chemical composition and antimicrobial activity of the volatile oil of the cones of Cupressus torulosa D. DON from Nilgiris, India. Asian J. Traditional Med. 2, 206–211.Google Scholar
  44. Shah A., Li D. Z., Gao L. M., Li H. T. and Möller M. 2008 Genetic diversity within and among populations of the endangered species Taxus fuana (Taxaceae) from Pakistan and implications for its conservation. Biochem. Systemat. Ecol. 36, 183–193.CrossRefGoogle Scholar
  45. Shi Y. F., Li J. J. and Li B. Y. 1998 Uplift and environmental changes of Qinghai-Tibetan plateau in the Late Cenozoic [in Chinese]. Guangdong Science and Technology Press, Guangzhou.Google Scholar
  46. Trinkler E. 1930 The ice-age on the Tibetan plateau and in the adjacent regions. Geographi. J. 75, 225–232.CrossRefGoogle Scholar
  47. Tsering T. 2008 Studies on genetic diversity and variation in essential oil of tibetan giant cypress, Cupressus gigantea, and implications for its conservation biology. Dissertation, Fudan University.Google Scholar
  48. Wen J., Zhang J. Q., Nie Z. L., Zhong Y. and Sun H. 2014 Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front. Genet. 5, 1–16.Google Scholar
  49. Wright S. 1949 The genetical structure of populations. Anna. Eugen. 15, 323–354.CrossRefGoogle Scholar
  50. Wright S. 1978 Evolution and the genetics of populations: variability within and among natural populations, vol. 4. University of Chicago Press, Chicago.Google Scholar
  51. Wu Z. Y. 1983 Flora of China, vol. 1. Science Press, Beijng.Google Scholar
  52. Xia T., Meng L., Mao K., Tian B., Miehe G. and Liu J. 2008 Genetic variation in the Qinghai-Tibetan plateau endemic and endangered conifer Cupressus gigantea, detected using RAPD and ISSR markers. Silvae Genet. 57, 85–92.CrossRefGoogle Scholar
  53. Xu H. Y., Shi D. C., Wang J., Xu T. T. and Wu Y. X. 2008 Isolation and characterization of polymorphic microsatellite markers in Cupressus chenggiana SY Hu (Cupressaceae). Conser. Genet. 9, 1023–1026.CrossRefGoogle Scholar
  54. Yoichi W. and Tomaru N. 2014 Patterns of geographic distribution have a considerable influence on population genetic structure in one common and two rare species of Rhododendron (Ericaceae). Tree Genet. Genomes 10, 827–837.CrossRefGoogle Scholar
  55. Zhang Y. L., Li B. Y. and Zheng D. 2002 A discussion on the boundary and area of the Tibetan Plateauin China. Geographi. Res. 21, 1–8.Google Scholar
  56. Zhang Q., Yang Y. Z., Wu G. L., Zhang D. Y. and Liu J. Q. 2008 Isolation and characterization of microsatellite DNA primers in Juniperus przewalskii Kom (Cupressaceae). Conserv. Genet. 9, 767–769.CrossRefGoogle Scholar
  57. Zhang C., Huang J., Yin X., Lian C. and Li X. 2015 Genetic diversity and population structure of sour jujube, Ziziphus acidojujuba. Tree Genet. Genomes 11, 1–12.CrossRefGoogle Scholar
  58. Zheng W. J. and Fu L. G. 1978 Cupressus Linn. In Editorial committee of flora Reipublicae Popularis Sinicae (ed. Flora Republicae Popularis Sinicae Tomus 7: Gymnospermae), pp. 328–336. Science Press, Beijing.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Yaru Fu
    • 1
    • 2
    • 3
  • Shaoke Li
    • 1
    • 2
    • 3
  • Qiqiang Guo
    • 1
    • 2
    • 3
  • Weilie Zheng
    • 1
    • 2
    • 3
  • Rui Yang
    • 4
  • Huie Li
    • 1
    • 5
    Email author
  1. 1.Tibet Agricultural and Animal Husbandry CollegeNyingchiPeople’s Republic of China
  2. 2.Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of EducationNyingchiPeople’s Republic of China
  3. 3.National Key Station for Field Scientific Observation and ExperimentNyingchiPeople’s Republic of China
  4. 4.College of ForestryGuizhou UniversityGuiyangPeople’s Republic of China
  5. 5.College of AgricultureGuizhou UniversityGuiyangPeople’s Republic of China

Personalised recommendations