Skip to main content

Advertisement

Log in

Analysis of novel domain-specific mutations in the zebrafish ndr2/cyclops gene generated using CRISPR-Cas9 RNPs

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Nodal-related protein (ndr2) is a member of the transforming growth factor type \(\upbeta \) superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the ndr2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the medial floor plate, severe deficits in ventral forebrain development and cyclopia. Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained via random insertion, gene targeting (TALEN) or unknown methods. Therefore, most mutation sites were random and could not be predicted a priori. Using the CRISPR-Cas9 system from Streptococcus pyogenes, we targeted distinct regions in all three exons of zebrafish ndr2 and observed cyclopia in the injected (\(\hbox {G}_{0}\)) embryos. We show that the use of sgRNA-Cas9 ribonucleoprotein (RNP) complexes can cause penetrant cyclopic phenotypes in injected (\(\hbox {G}_{0}\)) embryos. Targeted polymerase chain reaction amplicon analysis using Sanger sequencing showed that most of the alleles had small indels resulting in frameshifts. The sequence information correlates with the loss of ndr2 activity. In this study, we validate multiple CRISPR targets using an in vitro nuclease assay and in vivo analysis using embryos. We describe one specific mutant allele resulting in the loss of conserved terminal cysteine-coding sequences. This study is another demonstration of the utility of the CRISPR-Cas9 system in generating domain-specific mutations and provides further insights into the structure–function of the ndr2 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Challa A. K., Boitet E. R., Turner A. N., Johnson L. W., Kennedy D., Downs E. R. et al. 2016 Novel hypomorphic alleles of the mouse tyrosinase gene induced by CRISPR-Cas9 nucleases cause non-albino pigmentation phenotypes. PLoS One 11, e0155812.

    Article  Google Scholar 

  • Constam D. B. 2014 Regulation of TGFbeta and related signals by precursor processing. Semin. Cell Dev. Biol. 32, 85–97.

    Article  CAS  Google Scholar 

  • Daopin S., Piez K. A., Ogawa Y. and Davies D. R. 1992 Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science 257, 369–373.

    Article  CAS  Google Scholar 

  • Doench J. G., Fusi N., Sullender M., Hegde M., Vaimberg E. W., Donovan K. F. et al. 2016 Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191.

  • Dougan S. T., Warga R. M., Kane D. A., Schier A. F. and Talbot W. S. 2003 The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130, 1837–1851.

    Article  CAS  Google Scholar 

  • Feldman B., Dougan S. T., Schier A. F. and Talbot W. S. 2000 Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Curr. Biol. 10, 531–534.

    Article  CAS  Google Scholar 

  • Gagnon J. A., Valen E., Thyme S. B., Huang P., Akhmetova L., Pauli A. et al. 2014 Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186.

    Article  Google Scholar 

  • Halpern M. E., Hatta K., Amacher S. L., Talbot W. S., Yan Y. L., Thisse B. et al. 1997 Genetic interactions in zebrafish midline development. Dev. Biol. 187, 154–170.

    Article  CAS  Google Scholar 

  • Hatta K., Puschel A. W. and Kimmel C. B. 1994 Midline signaling in the primordium of the zebrafish anterior central nervous system. Proc. Natl. Acad. Sci. USA 91, 2061–2065.

    Article  CAS  Google Scholar 

  • Hatta K., Kimmel C. B., Ho R. K. and Walker C. 1991 The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341.

    Article  CAS  Google Scholar 

  • Hsu P. D., Scott D. A., Weinstein J. A., Ran F. A., Konermann S., Agarwala V. et al. 2013 DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832.

    Article  CAS  Google Scholar 

  • Hwang W. Y., Fu Y., Reyon D., Maeder M. L., Tsai S. Q., Sander J. D. et al. 2013 Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229.

    Article  CAS  Google Scholar 

  • Jao L. E., Wente S. R. and Chen W. 2013 Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad Sci. USA 110, 13904–13909.

    Article  CAS  Google Scholar 

  • Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A. and Charpentier E. 2012 A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821.

    Article  CAS  Google Scholar 

  • Jing X. H., Zhou S. M., Wang W. Q. and Chen Y. 2006 Mechanisms underlying long- and short-range nodal signaling in zebrafish. Mech. Dev. 123, 388–394.

    Article  CAS  Google Scholar 

  • Kimmel C. B., Schilling T. F. and Hatta K. 1991 Patterning of body segments of the zebrafish embryo. Curr. Top Dev. Biol. 25, 77–110.

    Article  CAS  Google Scholar 

  • Kingsley D. M. 1994 The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8, 133–146.

    Article  CAS  Google Scholar 

  • Kunnapuu J., Bjorkgren I. and Shimmi O. 2009 The Drosophila DPP signal is produced by cleavage of its proprotein at evolutionary diversified furin-recognition sites. Proc. Natl. Acad. Sci. USA 106, 8501–8506.

    Article  CAS  Google Scholar 

  • Lim S., Wang Y., Yu X., Huang Y., Featherstone M. S. and Sampath K. 2013 A simple strategy for heritable chromosomal deletions in zebrafish via the combinatorial action of targeting nucleases. Genome Biol. 14, R69.

    Article  Google Scholar 

  • Mason A. J. 1994 Functional analysis of the cysteine residues of activin A. Mol. Endocrinol. 8, 325–332.

    CAS  PubMed  Google Scholar 

  • Massague J. 1990 The transforming growth factor-beta family. Annu. Rev. Cell Biol. 6, 597–641.

    Article  CAS  Google Scholar 

  • Massague J. 1998 TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–791.

    Article  CAS  Google Scholar 

  • McDonald N. Q. and Hendrickson W. A. 1993 A structural superfamily of growth factors containing a cystine knot motif. Cell 73, 421–424.

    Article  CAS  Google Scholar 

  • Mesnard D. and Constam D. B. 2010 Imaging proprotein convertase activities and their regulation in the implanting mouse blastocyst. J. Cell Biol. 191, 129–139.

    Article  CAS  Google Scholar 

  • Nelsen S. M. and Christian J. L. 2009 Site-specific cleavage of BMP4 by furin, PC6, and PC7. J. Biol. Chem. 284, 27157–27166.

    Article  CAS  Google Scholar 

  • Rebagliati M. R., Toyama R., Fricke C., Haffter P. and Dawid I. B. 1998a Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol. 199, 261–272.

    Article  CAS  Google Scholar 

  • Rebagliati M. R., Toyama R., Haffter P. and Dawid I. B. 1998b Cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. USA 95, 9932–9937.

    Article  CAS  Google Scholar 

  • Remacle A. G., Shiryaev S. A., Oh E. S., Cieplak P., Srinivasan A., Wei G. et al. 2008 Substrate cleavage analysis of furin and related proprotein convertases. A comparative study. J. Biol. Chem. 283, 20897–20906.

    Article  CAS  Google Scholar 

  • Roessler E., Pei W., Ouspenskaia M. V., Karkera J. D., Velez J. I., Banerjee-Basu S. et al. 2009 Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly. Mol. Genet. Metab. 98, 225–234.

    Article  CAS  Google Scholar 

  • Roy A., Kucukural A. and Zhang Y. 2010 I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738.

    Article  CAS  Google Scholar 

  • Sampath K., Rubinstein A. L., Cheng A. M., Liang J. O., Fekany K., Solnica-Krezel L. et al. 1998 Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185–189.

    Article  CAS  Google Scholar 

  • Schier A. F. and Shen M. M. 2000 Nodal signalling in vertebrate development. Nature 403, 385–389.

    Article  CAS  Google Scholar 

  • Schier A. F., Neuhauss S. C., Harvey M., Malicki J., Solnica-Krezel L., Stainier D. Y. et al. 1996 Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165–178.

    CAS  PubMed  Google Scholar 

  • Talbot W. S., Egan E. S., Gates M. A., Walker C., Ullmann B., Neuhauss S. C. et al. 1998 Genetic analysis of chromosomal rearrangements in the cyclops region of the zebrafish genome. Genetics 148, 373–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J., Yam C., Balasundaram G., Wang H., Gore A. and Sampath K. 2003 A temperature-sensitive mutation in the nodal-related gene cyclops reveals that the floor plate is induced during gastrulation in zebrafish. Development 130, 3331–3342.

    Article  CAS  Google Scholar 

  • Whitman M. 2001 Nodal signaling in early vertebrate embryos: themes and variations. Dev. Cell 1, 605–617.

    Article  CAS  Google Scholar 

  • Wu S. and Zhang Y. 2007 LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 35, 3375–3382.

    Article  CAS  Google Scholar 

  • Yang J., Yan R., Roy A., Xu D., Poisson J. and Zhang Y. 2015 The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8.

    Article  CAS  Google Scholar 

  • Zhang Y. 2008 I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9, 40.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the UAB Zebrafish Research Facility for providing care and maintenance of the facility, Dr Robert Kesterson and the UAB Transgenic & Genetically Engineered Models (TGEMs) Core facility for support, Dr Brad Yoder (CDIB, UAB) for providing laboratory space, Dr Michael Miller (CDIB, UAB) for help with microscopy, Dr Ben Johnson (VAI) and Dr David Crossman (Genetics, UAB) for help with sequence analysis, Kartik Manne for advice on structure prediction using PyMol, Ansuya Jogi and Dr Kiranam Chatti for editing and proofreading and the administrative support of the Science and Technology Honors (STH) Program. The authors also thank Dr Oreoluwa Adedoyin (MERIT Postdoctoral Scholar) and Lindsay Jenkins (STH undergraduate student) for assistance in the course. AKC thanks Dr Diane Tucker (STH Program) for advice on designing the CURE. This work was supported by a Teaching Innovation Grant to AKC by the Quality Enhancement Program (QEP) in the Center for Teaching & Learning, and the Department of Genetics, University of Alabama at Birmingham (UAB). This study was part of a Course-based Undergraduate Research Experience (CURE) for first year undergraduate students in the Science and Technology Honors (STH) Program at UAB. The STH Program provided support for materials and reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Challa.

Additional information

Corresponding editor: H. A. Ranganath

Conceived and designed the experiments: ANT, RSA, IEB, LNB, JCD, DMG, JPG, BAH, ASK, JBM, VLM, ZPM, CLN, RKP, MCR, YAS, APW, SRG, SDF and AKC. Performed the experiments: ANT, RSA, IEB, LNB, JCD, DMG, JPG, BAH, ASK, JBM, VLM, ZPM, CLN, RKP, MCR, YAS, APW, SRG, SDF and AKC. Data analysis: ANT, RSA, IEB, LNB, JCD, DMG, JPG, BAH, ASK, JBM, VLM, ZPM, CLN, RKP, MCR, YAS, APW, SRG, SDF and AKC. Contributed reagents/materials/analysis tools: ANT, RSA, IEB, LNB, JCD, DMG, JPG, BAH, ASK, JBM, VLM, ZPM, CLN, RKP, MCR, YAS, APW, SRG, SDF and AKC.

Manuscript preparation: ANT and AKC. All undergraduate students contributed equally in a course-based undergraduate research experience, Spring 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 4547 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, A.N., Andersen, R.S., Bookout, I.E. et al. Analysis of novel domain-specific mutations in the zebrafish ndr2/cyclops gene generated using CRISPR-Cas9 RNPs. J Genet 97, 1315–1325 (2018). https://doi.org/10.1007/s12041-018-1033-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-1033-6

Keywords

Profiles

  1. Anil K. Challa