Skip to main content
Log in

Mystique of Phycomyces blakesleeanus is a peculiar mitochondrial genetic element that is highly variable in DNA sequence while subjected to strong negative selection

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

A DNA region in the mitochondrial genome of the fungus Phycomyces blakesleeanus (Mucorales, Mucoromycota) was characterized in a population of wild-type strains. The region encodes a predicted protein similar to the reverse transcriptases encoded by mitochondrial retroplasmids of Neurospora species and other Sordariomycetes (Ascomycota), but is uncommon in other fungi. DNA sequences of this element, named mystique, are highly variable between the strains, having greater than 2.5% divergence, yet most of the nucleotide differences fall in codon positions that do not change the amino acid sequence. The high proportion of polymorphisms coupled to the rarity of nonsynonymous changes suggests that mystique is subject to counteracting forces of hypermutation and purifying selection. However, while evidence for negative selection may infer that the element provides a fitness benefit, some strains of P. blakesleeanus do not have the element and grow equivalently well as those strains with it. A mechanism to explain the variability between the mystique alleles is proposed, of error-prone replication through an RNA intermediate, reverse transcription and reintegration of the element into the mitochondrial genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Akins R. A., Kelley R. L. and Lambowitz A. M. 1986 Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell  47, 505–516.

    Article  CAS  Google Scholar 

  • Akins R. A., Grant D. M., Stohl L. L., Bottorff D. A., Nargang F. E. and Lambowitz A. M. 1988 Nucleotide sequence of the Varkud mitochondrial plasmid of Neurospora and synthesis of a hybrid transcript with a \(5^{\prime }\) leader derived from mitochondrial RNA. J. Mol. Biol.  204, 1–25.

    Article  CAS  Google Scholar 

  • Alvarez M. I., Peláez M. I. and Eslava A. P. 1980 Recombination between ten markers in Phycomyces. Mol. Gen. Genet.  179, 447–452.

    Article  Google Scholar 

  • Antal Z., Manczinger L., Kredics L., Kevei F. and Nagy E. 2002 Complete DNA sequence and analysis of a mitochondrial plasmid in the mycoparasitic Trichoderma harzianum strain T95. Plasmid  47, 148–152.

    Article  CAS  Google Scholar 

  • Bergman K., Eslava A. P. and Cerdá-Olmedo E. 1973 Mutants of Phycomyces with abnormal phototropism. Mol. Gen. Genet.  123, 1–16.

    Article  CAS  Google Scholar 

  • Burgeff H. 1928. Variabilität, Vererbund and Mutation bei Phycomyces blakesleeanus Bgff. Z. Vererbungsl.  49, 26–94.

    Google Scholar 

  • Camino L. P., Idnurm A. and Cerdá-Olmedo E. 2015 Diversity, ecology, and evolution in Phycomyces. Fungal Biol.  119, 1007–1021.

    Article  Google Scholar 

  • Cerdá-Olmedo E. 2001. Phycomyces and the biology of light and color. FEMS Microbiol. Rev.  25, 503–512.

    Article  Google Scholar 

  • Chaudhary S., Polaino S., Shakya V. P. S. and Idnurm A. 2013. A new genetic map for the zygomycete fungus Phycomyces blakesleeanus. PLoS One  8, e58931.

    Article  CAS  Google Scholar 

  • Collins R. A., Stohl L. L., Cole M. D. and Lambowitz A. M. 1981 Characterization of a novel plasmid DNA found in mitochondria of N. crassa. Cell  24, 443–452.

    Article  CAS  Google Scholar 

  • Corrochano L. M., Kuo A., Marcet-Houben M., Polaino S., Salamov A., Villalobos-Escobedo J. M. et al. 2016 Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr. Biol.  26, 1577–1584.

    Article  CAS  Google Scholar 

  • D’Souza A. D., Sultana S. and Maheshwari R. 2005 Characterization and prevalence of a circular mitochondrial plasmid in senescence-prone isolates of Neurospora intermedia. Curr. Genet.  47, 182–193.

    Article  Google Scholar 

  • Fox A. N. and Kennell J. C. 2001. Association between variant plasmid formation and senescence in retroplasmid-containing strains of Neurospora spp. Curr. Genet.  39, 92–100.

    Article  CAS  Google Scholar 

  • Galligan J. T. and Kennell J. C. 2007 Retroplasmids: linear and circular plasmids that replicate via reverse transcription. In Microbiology monographs (ed F. Meinhardt and R. Klassen), pp. 163–185. Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Heisenberg M. and Cerdá-Olmedo E. 1968 Segregation of heterokaryons in the asexual cycle of Phycomyces. Mol. Gen. Genet.  102, 187–195.

    Article  CAS  Google Scholar 

  • Idnurm A., Rodríguez-Romero J., Corrochano L. M., Sanz C., Iturriaga E. A., Eslava A. P. and Heitman J. 2006 The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc. Natl. Acad. Sci. USA  103, 4546–4551.

    Article  CAS  Google Scholar 

  • Kempken F. 1995 Horizontal transfer of a mitochondrial plasmid. Mol. Gen. Genet.  248, 89–94.

    Article  CAS  Google Scholar 

  • Korber B. 2000 HIV Signature and sequence variation analysis. In Computational analysis of HIV molecular sequences (ed A. G. Rodrigo and G. H. Learn), pp. 55–72. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Kumar S., Stecher G. and Tamura K 2016 MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.  33, 1870–1874.

    Article  CAS  Google Scholar 

  • Larson E. M. and Idnurm A. 2010 Two origins for the gene encoding \(\upalpha \)-isopropylmalate synthase in fungi. PLoS One  5, e11605.

    Article  Google Scholar 

  • Lee S. C. and Idnurm A. 2017. Fungal sex: the Mucoromycota. Microbiol. Spectrum  5, FUNK-0041-2017.

  • Nargang F. E. 1986 Conservation of a long open reading frame in two Neurospora mitochondrial plasmids. Mol. Biol. Evol.  3, 19–28.

    CAS  PubMed  Google Scholar 

  • Nargang F. E., Bell J. B., Stohl L. L. and Lambowitz A. M. 1984 The DNA sequence and genetic organization of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell  38, 441–453.

    Article  CAS  Google Scholar 

  • Nei M. and Gojobori T. 1986 Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol.  3, 418–426.

    CAS  PubMed  Google Scholar 

  • Obraztsova I. N., Prados N., Holzmann K., Avalos J. and Cerdá-Olmedo E. 2004 Genetic damage following introduction of DNA in Phycomyces. Fungal Genet. Biol.  41, 168–180.

    Article  CAS  Google Scholar 

  • Ootaki T. and Miyazaki A. 1993 Genetic nomenclature and strain catalogue of Phycomyces. Tohoku University, Sendai, Japan.

    Google Scholar 

  • Orejas M., Peláez M. I., Alvarez M. I. and Eslava A. P. 1987 A genetic map of Phycomyces blakesleeanus. Mol. Gen. Genet.  210, 69–76.

    Article  CAS  Google Scholar 

  • Pitkin J. W., Panaccione D. G. and Walton J. D. 1996 A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology  142, 1557–1565.

    Article  CAS  Google Scholar 

  • Polaino S., Villalobos-Escobedo V. M., Shakya V. P. S., Miralles-Durán A., Chaudhary S., Sanz C., Shahriari M., Luque E. M., Eslava A. P., Corrochano L. M., Herrera-Estrella A. and Idnurm A. 2017 A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Sci. Rep.  7, 44790.

    Article  CAS  Google Scholar 

  • Sanz C., Rodríguez-Romero J., Idnurm A., Christie J. M., Heitman J., Corrochano L. M. and Eslava A. P. 2009 Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc. Natl. Acad. Sci. USA  106, 7095–7100.

    Article  CAS  Google Scholar 

  • Seif E., Leigh J., Liu Y., Roewer I., Forget L. and Lang B. F. 2005 Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Nucleic Acids Res.  33, 734–744.

    Article  CAS  Google Scholar 

  • Shakya V. P. S. and Idnurm A. 2014. Sex determination directs uniparental mitochondrial inheritance in Phycomyces. Eukaryotic Cell  13, 186–189.

    Article  Google Scholar 

  • Tagua V. G., Medina H. R., Martín-Domínguez R., Eslava A. P., Corrochano L. M., Cerdá-Olmedo E. and Idnurm A. 2012 A gene for carotene cleavage required for pheromone synthesis and carotene regulation in the fungus Phycomyces. Fungal Genet. Biol.  49, 398–404.

    Article  CAS  Google Scholar 

  • Thornton R. M. 1973 New photoresponses of Phycomyces. Plant Physiol.  51, 570–576.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was initiated at the University of Missouri-Kansas City, and I thank the UMKC undergraduates in the LS 399 and LS 499 courses for their technical assistance in DNA amplification and sequencing. The research was supported by the University of Melbourne and Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Idnurm.

Additional information

Corresponding editor: Qingpo Liu

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3319 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idnurm, A. Mystique of Phycomyces blakesleeanus is a peculiar mitochondrial genetic element that is highly variable in DNA sequence while subjected to strong negative selection. J Genet 97, 1195–1204 (2018). https://doi.org/10.1007/s12041-018-1014-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-1014-9

Keywords

Profiles

  1. Alexander Idnurm