Journal of Genetics

, Volume 97, Issue 5, pp 1139–1146 | Cite as

Ultrastructural studies and molecular characterization of root-associated fungi of \(\textit{Crepidium acuminatum}\) (D. Don) Szlach.: a threatened and medicinally important taxon

  • Julie Thakur
  • Mayank D. DwivediEmail author
  • Prem L. Uniyal
Research Article


Crepidium acuminatum (Orchidaceae) is a threatened medicinal orchid that grows under shady and moist forest floor where light remains for a very short period of time. Mycorrhizal association is known to be essential for seed germination and seedling establishment in a majority of orchids. Identification of fungi that form mycorrhizae with orchids is of crucial importance for orchid conservation. We used both morphological as well as molecular approaches to study this plant–fungal interaction. Scanning electron microscopy showed that fungi grow and proliferate in the middle layers of the cortex. Also, spiral-root hairs were found along with root hairs, which is an unusual observation. Spiral-root hairs provide more surface area for fluid absorption and entrance of colonizers. Further, total root genomic DNA was isolated and fungal internal-transcribed spacer (ITS) regions were polymerase chain reaction (PCR)-amplified using specific primer combinations ITS1F/ITS4 and ITS1/ITS4tul. ITS sequences were obtained and analysed to know the closest sequence matche in the GenBank using BLASTn hosted by NLM-NCBI. Subject sequences were identified to be belonging to three main genera, namely, Tulasnella, Aspergillus and Penicillium. Results indicate that mycorrhizal association is necessary for the growth and development of the plant. In addition, this symbiosis influences the distribution and rarity of this medicinally valuable taxon. Specific fungal partners may lead to an enhanced seed germination rate and increased efficiency of nutrient exchange between both the partners. Hence, knowledge of mycorrhizal fungi is essential for future in vitro germination and seedling establishment programmes, because they rely on fungi for germination. Identification of mycorrhizal fungi can be used for orchid propagation and conservation programmes.


Aspergillus internal-transcribed spacer mycorrhizae orchids Penicillium Tulasnella Crepidium acuminatum 



Grant support (#BT/Env/BC/01/2010/23.3.2012) from the Department of Biotechnology, Government of India, New Delhi, is thankfully acknowledged. We also thank Advanced Instrumentation Research Facility, JNU for TEM analysis. Thanks to Pro.f A. K. Pandey for critical reading of the manuscript.


  1. Agustini V., Sufaati S. and Suharno S. 2009 Mycorrhizal association of terrestrial orchids of cycloops nature reserve, Jayapura. Biodiversitas 10, 175–180.CrossRefGoogle Scholar
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W. et al. 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.CrossRefGoogle Scholar
  3. Arditti J. 1992 Fundamentals of orchid biology. John Wiley & Sons, New York.Google Scholar
  4. Arenmongla T. and Deb C. R. 2012 Germination of immature embryos and multiplication of Malaxis acuminata D. Don, an endangered therapeutically important orchid, by asymbiotic culture in vitro. Indian J. Biotechnol. 11, 464–469.Google Scholar
  5. Balkrishna A., Srivastava A., Mishra R. K., Patel S. P., Vashistha R. K., Singh A. et al. 2012 Astavarga plants – threatened medicinal herbs of the North-West Himalaya. Int. J. Med. Arom. Plants 2, 661–676.Google Scholar
  6. Bayman P., Gonzalez E. J., Fumero J. J. and Tremblay R. L. 2002 Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. J. Ecol. 90, 1002–1008.CrossRefGoogle Scholar
  7. Bernal A. A., de Camargo Smidt E. and Bona C. 2015 Spiral root hairs in Spiranthinae (Cranichideae: Orchidaceae). Braz. J. Bot. 38, 411–415.CrossRefGoogle Scholar
  8. Bidartondo M. I., Burghardt B., Gebauer G., Bruns T. D. and Read D. J. 2004 Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc. R. Soc. Lond271, 1799–1806.CrossRefGoogle Scholar
  9. Bonnardeaux Y., Brundrett M., Batty A., Dixon K., Koch. J. and Sivasithamparam K. 2007 Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol. Res111, 51–61.CrossRefGoogle Scholar
  10. Bougoure J. J., Bougoure D. S., Cairney J. W. and Dearnaley J. D. 2005 ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol. Res109, 452–460.CrossRefGoogle Scholar
  11. Bozzola J. J. and Russell L. D. 1991 Electron microscopy: principles and techniques for biologists. Jones and Bartlett massachusetts.Google Scholar
  12. Brundrett M. 2014 Identification and ecology of southwest Australian orchids. West Australian Naturalists’ Club, Perth.Google Scholar
  13. Burgeff H. 1909 Die Wurzelpilze der orchideen. Verlag from Gustav Fischer, Jena.Google Scholar
  14. Chase M. W., Cameron K. M., Freudenstein J. V., Pridgeon A. M., Salazar G., Berg C. et al. 2015 An updated classification of Orchidaceae. Bot. J. Linn. Soc. 177, 151–174.CrossRefGoogle Scholar
  15. Chauhan N. S. 1999 Medicinal and aromatic plants of Himachal Pradesh. Indus Publishing House, New Delhi.Google Scholar
  16. Cheruvathur M. K., Abraham J., Mani B. and Thomas T. D. 2010 Adventitious shoot induction from cultured internodal explants of Malaxis acuminata D. Don, a valuable terrestrial medicinal orchid. Plant Cell Tissue Organ Cult. 101, 163–170.CrossRefGoogle Scholar
  17. Clements M. A. 1988 Orchid mycorrhizal associations. Lindleyana 3, 73–86.Google Scholar
  18. Currah R. S. and Sherburne R. 1992 Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas. Mycol. Res96, 583–587.CrossRefGoogle Scholar
  19. Dearnaley J. D. W. and Le Brocque A. F. 2006 Molecular identification of the primary root fungal endophytes of Dipodium hamiltonianum (Orchidaceae). Aust. J. Bot54, 487–491.CrossRefGoogle Scholar
  20. Dearnaley J. D. and Bougoure J. J. 2010 Isotopic and molecular evidence for saprotrophic Marasmiaceae mycobionts in rhizomes of Gastrodia sesamoides. Fungal Ecol3, 288–294.Google Scholar
  21. Deb C. R. and Arenmongla T. 2013 In vitro regeneration potential of foliar explants of Malaxis acuminata D. Don.: a therapeutically important terrestrial orchid. Appl. Biol. Res. 15, 32–39.Google Scholar
  22. Deb C. R. and Arenmongla T. 2014 Development of cost effective in vitro regeneration protocol of Malaxis acuminata D. Don a therapeutically important orchid using pseudobulbs as explant source. J. Plant Stud. 3, 13.Google Scholar
  23. Evert R. F. 2006 Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. John Wiley & Sons, New Jersy.CrossRefGoogle Scholar
  24. Fahn A. 1990 Plant anatomy, 4th edition. Pergamon: Oxford.Google Scholar
  25. Frank A. B. 1891 Lehrbuch der Botanik. Bd. IW Engelmann, LeipzigGoogle Scholar
  26. Gardes M. and Bruns T. D. 1993 ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118.CrossRefGoogle Scholar
  27. Hajra P. K. and De A. 2011 Orchids of Assam and their in-situ conservation. Phytotaxonomy 11, 28–36.Google Scholar
  28. Heckman J. W., Schiefelbein J. W. and Galway M. E. 1997 Growth and ultrastructure of Arabidopsis root hairs: the rhd3 mutation alters vacuole enlargement and tip growth. Planta 201, 209–218.CrossRefGoogle Scholar
  29. Jyothsna B. S. and Purushothama K. B. 2013 Studies on the mycorrhizal of Geodorum densiflorum (Lam.) Schltr. from Western ghats of Karnataka. Int. J. Pharm. Biol. Sci. 6, 92–95.Google Scholar
  30. Kaur S. and Bhutani K. K. 2010 Micropropagation of Malaxis acuminata D. Don: a rare orchid of high therapeutic value. J. Med. Aromat. Plants 1, 29–23.Google Scholar
  31. Kheyrodin H. 2014 Plant and soil relationship between fungi. Int. J. Res. Stud. Biosci. 2, 42–49.Google Scholar
  32. Lange D. and Schippmann U. 1999 Checklist of medicinal and aromatic plants and their trade names covered by CITES and EU Regulation 2307/97.Google Scholar
  33. Leitgeb H. 1865 Luftwurzeln der orchideen. Flora 18, 93.Google Scholar
  34. Lersten N. R. and Curtis J. D. 1977 Preliminary report of outer wall helices in trichomes of certain dicots. Can. J. Bot. 55, 128–132.CrossRefGoogle Scholar
  35. Löytynoja A. and Goldman N. 2010 webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinf.  11, 579.CrossRefGoogle Scholar
  36. Magnus-Levy A. 1900 Ueber den Bence-Jones’ schen Eiweisskörper. Z. Physiol. Chem30, 200.CrossRefGoogle Scholar
  37. Martos F., Dulormne M., Pailler T., Bonfante P., Faccio A., Fournel J. et al. 2009 Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol. 184, 668–681.CrossRefGoogle Scholar
  38. Muthukumar T., Sha L., Yang X., Cao M., Tang J. and Zheng Z. 2003 Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza 13, 289–297.CrossRefGoogle Scholar
  39. Muthukumar T., Uma E., Karthikeyan A., Sathiyadash K., Jaison S., Priyadharsini P. et al. 2011 Morphology, anatomy and mycorrhizae in subterranean parts of Zeuxine gracilis (Orchidaceae.) An. Biol. 33, 127–134.Google Scholar
  40. Otero J. T., Ackerman J. D. and Bayman P. 2002 Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am. J. Bot. 89, 1852–1858.CrossRefGoogle Scholar
  41. Otero J. T., Flanagan N. S., Herre E. A., Ackerman J. D. and Bayman P. 2007 Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am. J. Bot. 94, 1944–1950.CrossRefGoogle Scholar
  42. Peterson R. L., Uetake Y. and Zelmer C. 1998 Fungal symbioses with orchid protocorms. Symbiosis 25, 29–55.Google Scholar
  43. Phillips J. M. and Hayman D. S. 1970 Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161.CrossRefGoogle Scholar
  44. Rasmussen H. N. 2002 Recent developments in the study of orchid mycorrhiza. Plant Soil 244, 149–163.CrossRefGoogle Scholar
  45. Reynolds E. S. 1963 The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell. Biol. 17, 208.CrossRefGoogle Scholar
  46. Ruzin S. E. 1999 Plant microtechnique and microscopy, pp. 198. Oxford University Press, New York.Google Scholar
  47. Sathiyadash K., Muthukumar T., Uma E. and Pandey R. R. 2012 Mycorrhizal association and morphology in orchids. J. Plant Interact7, 238–247.CrossRefGoogle Scholar
  48. Schlichting E., Blume H. P. and Stahr K. 1995 Bodenkundliches praktikum, 2nd edition. Blackwell, Berlin.Google Scholar
  49. Seifert K. A. 2009 Progress towards DNA barcoding of fungi. Mol. Ecol. Resour. 9, 83–89.CrossRefGoogle Scholar
  50. Sharma P., Nipun M., Pankaj G., Gurukirpal S., Sumit D. and Sakshi S. 2011 Malaxis acuminata: a review. Int. J. Res. Ayurveda Pharm2, 422–425.Google Scholar
  51. Shi H. and Zhu J. K. 2002 SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol. 129, 585–593.CrossRefGoogle Scholar
  52. Sieberer B. J., Ketelaar T., Esseling J. J. and Emons A. M. C. 2005 Microtubules guide root hair tip growth. New Phytol. 167, 711–719.CrossRefGoogle Scholar
  53. Smith S. E. and Read D. J. 2010 Mycorrhizal symbiosis. Academic Press, New York.Google Scholar
  54. Stern W. L., Morris M. W., Judd W. S., Pridgeon A. M. and Dressler R. L. 1993 Comparative vegetative anatomy and systematics of Spiranthoideae (Orchidaceae). Bot. J. Linn. Soc. 113, 161–197.CrossRefGoogle Scholar
  55. Suárez J. P., Weiß M., Abele A., Garnica S., Oberwinkler F. and Kottke I. 2006 Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol. Res. 110, 1257–1270.CrossRefGoogle Scholar
  56. Sudheep N. M. and Sridhar K. R. 2012 Non-mycorrhizal fungal endophytes in two orchids of Kaiga forest (Western Ghats) Indian J. For. Res. 23, 453–460.Google Scholar
  57. Swarts N. D., Sinclair E. A., Francis A. and Dixon K. W. 2010 Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol. Ecol. 19, 3226–3242.CrossRefGoogle Scholar
  58. Tamta B. P., Sharma A. K., Puni L. and Singh A. 2015 Propagation and conservation of endangered orchid Microstylis wallichii Syn Malaxis acuminata (Jeevak) in its natural habitats of Uttarakhand Himalayas. Int. J. Sci. Technol. 4, 424–432.Google Scholar
  59. Taylor D. L. and Bruns T. D. 1997 Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc. Natl. Acad. Sci. USA 94, 4510–4515.CrossRefGoogle Scholar
  60. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997 The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882Google Scholar
  61. Uma E., Rajendran R. and Muthukumar T. 2015 Morphology, anatomy and mycotrophy of pseudobulb and subterranean organs in Eulophia epidendraea and Malaxis acuminata (Epidendroideae, Orchidaceae). Flora 217, 14–23.CrossRefGoogle Scholar
  62. Wahrlich W. 1886 Beitrag zur Kenntniss der Orchideenwurzelpilze. Druck von Brietkopf & Härtel.Google Scholar
  63. Warcup J. H. 1971 Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol. 70, 41–46.CrossRefGoogle Scholar
  64. Warcup J. H. and Talbot P. H. B. 1967 Perfect states of Rhizoctonias associated with orchids. New Phytol. 66, 631–641.CrossRefGoogle Scholar
  65. Watson M. L. 1958 Staining of tissue sections for electron microscopy with heavy metals II. Application of solutions containing lead and barium. J. Biophys. Biochem. Cytol, 4, 727–730.Google Scholar
  66. Wells K. and Bandoni R. J. 2001 Heterobasidiomycetes. In Systematics and evolution, pp 85–120. Springer, BerlinGoogle Scholar
  67. White T. J., Bruns T., Lee S. and Taylor J. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a guide to methods and applications (eds M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White), pp. 315–322. Academic Press, New York, USA.Google Scholar
  68. Yam T. W. and Arditti J. 2009 History of orchid propagation: a mirror of the history of biotechnology. Plant Biotechnol. Rep. 3, 1.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations