Skip to main content

Advertisement

Log in

Tied up: Does altering phosphoinositide-mediated membrane trafficking influence neurodegenerative disease phenotypes?

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Phosphoinositides are a class of membrane lipids that are found on several intracellular compartments and play diverse roles inside cells, such as vesicle formation, protein trafficking, endocytosis etc. Intracellular distribution and levels of phosphoinositides are regulated by enzymes that generate and breakdown these lipids as well as other proteins that associate with phosphoinositides. These events lead to differing levels of specific phosphoinositides on different intracellular compartments. At these intracellular locations, phosphoinositides and their associated proteins, such as Rab GTPases, dynamin and BAR domain-containing proteins, regulate a variety of membrane trafficking pathways. Neurodegenerative phenotypes in disorders such as Parkinson’s disease (PD) can arise as a consequence of altered or hampered intracellular trafficking. Altered trafficking can cause proteins such as \(\upalpha \)-synuclein to aggregate intracellularly. Several trafficking pathways are regulated by master regulators such as LRRK2, which is known to regulate the activity of phosphoinositide effector proteins. Perturbing either the levels of phosphoinositides or their interactions with different proteins disrupts intracellular trafficking pathways, contributing to phenotypes often observed in disorders such as Alzheimer’s or PDs. Thus, studying phosphoinositide regulation and its role in trafficking can give us a deeper understanding of the contribution of disrupted trafficking to neurodegenerative phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aasly J. O., Vilarino-Guell C., Dachsel J. C., Webber P. J., West A. B., Haugarvoll K. et al. 2010 Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson’s disease. Mov. Disord. 25, 2156–2163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Achiriloaie M., Barylko B. and Albanesi J. P. 1999 Essential role of the dynamin Pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell. Biol. 19, 1410–1415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aivazian D., Serrano R. L. and Pfeffer S. 2006 TIP47 is a key effector for Rab9 localization. J. Cell Biol. 173, 917–926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anding A. L. and Baehrecke E. H. 2017 Cleaning house: selective autophagy of organelles. Dev. Cell 41, 10–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arranz A. M., Delbroek L., Van Kolen K., Guimarães M. R., Mandemakers W., Daneels G. et al. 2015 LRRK2 functions in synaptic vesicle endocytosis through a kinase–dependent mechanism. J. Cell Sci. 128, 541.

    Article  PubMed  CAS  Google Scholar 

  • Balla T. 1998 Phosphatidylinositol 4-kinases. Biochim. Biophys. Acta. 1436, 69–85.

    Article  PubMed  CAS  Google Scholar 

  • Balla A., Tuymetova G., Barshishat M., Geiszt M. and Balla T. 2002 Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277, 20041–20050.

    Article  PubMed  CAS  Google Scholar 

  • Behnia R. and Munro S. 2005 Organelle identity and the signposts for membrane traffic. Nature 438, 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Beilina A., Rudenko I. N., Kaganovich A., Civiero L., Chau H., Kalia S. K. et al. 2014 Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc. Natl Acad. Sci. USA 111, 2626–2631.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berg D., Schweitzer K. J., Leitner P., Zimprich A., Lichtner P., Belcredi P. et al. 2005 Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease . Brain 128, 3000–3011.

    Article  PubMed  Google Scholar 

  • Biskup S., Moore D. J., Celsi F., Higashi S., West A. B., Andrabi S. A. et al. 2006 Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann. Neurol. 60, 557–569.

    Article  PubMed  CAS  Google Scholar 

  • Blood P. D. and Voth G. A. 2006 Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 103, 15068–15072.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bolino A., Muglia M., Conforti F. L., LeGuern E., Salih M. A. M., Georgiou D.-M. et al. 2000 Charcot-marie-tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25, 17.

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino J. S. and Glick B. S. 2004 The mechanisms of vesicle budding and fusion. Cell 116, 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Bottomley M. J., Surdo P. L. and Driscoll P. C. 1999 Endocytosis: how dynamin sets vesicles PHree! Curr. Biol. 9, R301–R304.

    Article  PubMed  CAS  Google Scholar 

  • Boucrot E., Ferreira A. P., Almeida-Souza L., Debard S., Vallis Y., Howard G. et al. 2015 Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517, 460–465.

  • Burgess J., Del Bel L. M., Ma C. I., Barylko B., Polevoy G., Rollins J. et al. 2012 Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Development 139, 3040–3050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlton J. G. and Cullen P. J. 2005 Coincidence detection in phosphoinositide signaling. Trends Cell. Biol. 15, 540–547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapuis J., Hansmannel F., Gistelinck M., Mounier A., Van Cauwenberghe C., Kolen K. V. et al. 2013 Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol. Psychiatry 18, 1225–1234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L. and Feany M. B. 2005 \(\upalpha \)-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat. Neurosci. 8, 657.

    Article  PubMed  CAS  Google Scholar 

  • Cheong F. Y., Sharma V., Blagoveshchenskaya A., Oorschot V. M., Brankatschk B., Klumperman J. et al. 2010 Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic 11, 1180–1190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chidambaram S., Mullers N., Wiederhold K., Haucke V. and von Mollard G. F. 2004 Specific interaction between SNAREs and epsin N-terminal homology (ENTH) domains of epsin-related proteins in trans-Golgi network to endosome transport. J. Biol. Chem. 279, 4175–4179.

    Article  PubMed  CAS  Google Scholar 

  • Choudhary B., Kamak M., Ratnakaran N., Kumar J., Awasthi A., Li C. et al. 2017 UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes. PLoS Genet. 13, e1007100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chow C. Y., Zhang Y., Dowling J. J., Jin N., Adamska M., Shiga K. et al. 2007 Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448, 68–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chow C. Y., Landers J. E., Bergren S. K., Sapp P. C., Grant A. E., Jones J. M. et al. 2009 Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am. J. Hum. Genet. 84, 85–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christoforidis S., Miaczynska M., Ashman K., Wilm M., Zhao L., Yip S.-C. et al. 1999 Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell Biol. 1, 249.

    Article  PubMed  CAS  Google Scholar 

  • Chung K. W., Kim S. B., Park K. D., Choi K. G., Lee J. H., Eun H. W. et al. 2006 Early onset severe and late-onset mild Charcot–marie–tooth disease with mitofusin 2 (MFN2) mutations. Brain 129, 2103–2118.

    Article  PubMed  CAS  Google Scholar 

  • Clark S. G., Shurland D. L., Meyerowitz E. M., Bargmann C. I. and van der Bliek A. M. 1997 A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc. Natl. Acad. Sci. USA 94, 10438–10443.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cogli L., Piro F. and Bucci C. 2009 Rab7 and the CMT2B disease. Biochem. Soc. Trans. 37, 1027–1031.

    Article  PubMed  CAS  Google Scholar 

  • Cooke F. T., Dove S. K., McEwen R. K., Painter G., Holmes A. B., Hall M. N. et al. 1998 The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr. Biol. 8, 1219–1222.

    Article  PubMed  CAS  Google Scholar 

  • Cooper A. A., Gitler A. D., Cashikar A., Haynes C. M., Hill K. J., Bhullar B. et al. 2006 \(\upalpha \)-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s Models. Science 313, 324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox D., Berg J. S., Cammer M., Chinegwundoh J. O., Dale B. M., Cheney R. E. et al. 2002 Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat. Cell Biol. 4, 469–477.

    Article  PubMed  CAS  Google Scholar 

  • Cremona O., Di Paolo G., Wenk M. R., Lüthi A., Kim W. T., Takei K. et al. 1999 Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Currinn H. and Wassmer T. 2016 The amyloid precursor protein (APP) binds the PIKfyve complex and modulates its function. Biochem. Soc. Trans. 44, 185.

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo F., Vignaud H., Di Martino J., Salin B., Devin A., Cullin C. et al. 2013 A yeast model for amyloid-\(\upbeta \) aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. Dis. Model Mech. 6, 206.

    Article  PubMed  CAS  Google Scholar 

  • Dang H., Li Z., Skolnik E. Y. and Fares H. 2004 Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol. Biol. Cell 15, 189–196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Renzis S., Sonnichsen B. and Zerial M. 2002 Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat. Cell Biol. 4, 124–133.

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G. and De Camilli P. 2006 Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657.

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G., Moskowitz H. S., Gipson K., Wenk M. R., Voronov S., Obayashi M. et al. 2004 Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415.

    Article  PubMed  CAS  Google Scholar 

  • Dodson M. W., Zhang T., Jiang C., Chen S. and Guo M. 2012 Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum. Mol. Genet. 21, 1350–1363.

    Article  PubMed  CAS  Google Scholar 

  • Dove S. K., Cooke F. T., Douglas M. R., Sayers L. G., Parker P. J. and Michell R. H. 1997 Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390, 187.

    Article  PubMed  CAS  Google Scholar 

  • Duex J. E., Nau J. J., Kauffman E. J. and Weisman L. S. 2006 Phosphoinositide 5-Phosphatase Fig4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot. Cell 5, 723–731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eberhard D. A., Cooper C. L., Low M. G. and Holz R. W. 1990 Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem. J. 268, 15–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engqvist-Goldstein A. E., Kessels M. M., Chopra V. S., Hayden M. R. and Drubin D. G. 1999 An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell Biol. 147, 1503–1518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engqvist-Goldstein A. E., Warren R. A., Kessels M. M., Keen J. H., Heuser J. and Drubin D. G. 2001 The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell Biol. 154, 1209–1223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eugster A., Pécheur E.-I., Michel F., Winsor B., Letourneur F. and Friant S. 2004 Ent5p is required with Ent3p and Vps27p for ubiquitin-dependent protein sorting into the multivesicular body. Mol. Biol. Cell 15, 3031–3041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabelo N., Martín V., Santpere G., Marín R., Torrent L., Ferrer I. et al. 2011 Severe Alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol. Med. 17, 1107–1118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falkenburger B. H., Jensen J. B., Dickson E. J., Suh B. C. and Hille B. 2010 Phosphoinositides: lipid regulators of membrane proteins. J. Physiol. 588, 3179–3185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farias G. G., Cuitino L., Guo X., Ren X., Jarnik M., Mattera R. et al. 2012 Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 75, 810–823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez-Fernandez M. R., Ruiz-Garcia D., Martin-Solana E., Chichon F. J., Carrascosa J. L. and Fernandez J.-J. 2017 3D electron tomography of brain tissue unveils distinct Golgi structures that sequester cytoplasmic contents in neurons. J. Cell Sci. 130, 83.

    Article  PubMed  CAS  Google Scholar 

  • Ferrell J. E. and Huestis W. H. 1984 Phosphoinositide metabolism and the morphology of human erythrocytes. J. Cell Biol. 98, 1992–1998.

    Article  PubMed  CAS  Google Scholar 

  • Fiandaca M. S., Mapstone M. E., Cheema A. K. and Federoff H. J. 2014 The critical need for defining preclinical biomarkers in Alzheimer’s disease. Alzheimers Dement. 10, S196–S212.

  • Ford M. G. J., Mills I. G., Peter B. J., Vallis Y., Praefcke G. J. K., Evans P. R. et al. 2002 Curvature of clathrin-coated pits driven by epsin. Nature 419, 361.

    Article  PubMed  CAS  Google Scholar 

  • Ford M. G. J., Pearse B. M. F., Higgins M. K., Vallis Y., Owen D. J., Gibson A. et al. 2001 Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051.

    Article  PubMed  CAS  Google Scholar 

  • Friant S., Pécheur E.-I., Eugster A., Michel F., Lefkir Y., Nourrisson D. et al. 2003 Ent3p Is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev. Cell 5, 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Fruman D. A., Meyers R. E. and Cantley L. C. 1998 Phosphoinositide kinases. Ann. Rev. Biochem. 67, 481–507.

    Article  CAS  Google Scholar 

  • Funayama M., Hasegawa K., Kowa H., Saito M., Tsuji S. and Obata F. 2002 A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol. 51, 296–301.

    Article  PubMed  CAS  Google Scholar 

  • Gallop J. L., Jao C. C., Kent H. M., Butler P. J. G., Evans P. R., Langen R. et al. 2006 Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan-Or Z., Bar-Shira A., Dahary D. Mirelman A., Kedmi M., Gurevich T., Giladi N. et al. 2012 Association of sequence alterations in the putative promoter of rab7l1 with a reduced parkinson disease risk. Arch Neurol. 69, 105–110.

    Article  PubMed  Google Scholar 

  • Gary J. D., Wurmser A. E., Bonangelino C. J., Weisman L. S. and Emr S. D. 1998 Fab1p Is Essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J. Cell Biol. 143, 65–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gasser T. 2009 Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev. Mol. Med. 11, e22.

    Article  PubMed  Google Scholar 

  • Ghosh D., Mehra S., Sahay S., Singh P. K. and Maji S. K. 2017 \(\upalpha \)-synuclein aggregation and its modulation. Int. J. Biol. Macromol. 100, 37–54.

    Article  PubMed  CAS  Google Scholar 

  • Gispert S., Turco D. D., Garrett L., Chen A., Bernard D. J., Hamm-Clement J. et al. 2003 Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol. Cell. Neurosci. 24, 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Gitler A. D., Bevis B. J., Shorter J., Strathearn K. E., Hamamichi S., Su L. J. et al. 2008 The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc. Natl. Acad. Sci. USA 105, 145–150.

    Article  PubMed  Google Scholar 

  • Godi A., Di Campli A., Konstantakopoulos A., Di Tullio G., Alessi D. R., Kular G. S. et al. 2004 FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 6, 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Griffith H. R., den Hollander J. A., Okonkwo O. C., O’Brien T., Watts R. L. and Marson D. C. 2008 Brain metabolism differs in Alzheimer’s disease and Parkinson’s disease dementia. Alzheimers Dement. 4, 421–427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R. et al. 2006 Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889.

    Article  PubMed  CAS  Google Scholar 

  • Harold D., Abraham R., Hollingworth P., Sims R., Gerrish A., Hamshere M. L. et al. 2009 Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris T. W., Schuske K. and Jorgensen E. M. 2001 Studies of synaptic vesicle endocytosis in the nematode C. elegans. Traffic 2, 597–605.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa J., Iwamoto R., Otomo T., Nezu A., Hamasaki M. and Yoshimori T. 2016 Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome. EMBO J. 35, 1853–1867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassan B. A., Prokopenko S. N., Breuer S., Zhang B., Paululat A. and Bellen H. J. 1998 skittles, a Drosophila phosphatidylinositol 4-phosphate 5-kinase, is required for cell viability, germline development and bristle morphology, but not for neurotransmitter release. Genetics 150, 1527.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hay J. C., Fisette P. L., Jenkins G. H., Fukami K., Takenawa T., Anderson R. A. et al. 1995 ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374, 173.

    Article  PubMed  CAS  Google Scholar 

  • He F., Agosto M. A., Anastassov I. A., Tse D. Y., Wu S. M. and Wensel T. G. 2016 Phosphatidylinositol-3-phosphate is light-regulated and essential for survival in retinal rods. Sci. Rep. 6, 26978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heo H. Y., Kim K.-S. and Seol W. 2010 Coordinate regulation of neurite outgrowth by LRRK2 and its interactor, Rab5. Exp. Neurobiol. 19, 97–105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Higashi S., Biskup S., West A. B., Trinkaus D., Dawson V. L., Faull R. L. et al. 2007 Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Res. 1155, 208–219.

    Article  PubMed  CAS  Google Scholar 

  • Hom R. A., Vora M., Regner M., Subach O. M., Cho W., Verkhusha V. V. et al. 2007 pH-Dependent binding of the epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P(2)-containing bilayers. J. Mol. Biol. 373, 412–423.

  • Honing S., Ricotta D., Krauss M., Spate K., Spolaore B., Motley A. et al. 2005 Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531.

  • Itoh T. and De Camilli P. 2006 BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761, 897–912.

    Article  PubMed  CAS  Google Scholar 

  • Itoh T., Koshiba S., Kigawa T., Kikuchi A., Yokoyama S. and Takenawa T. 2001 Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047.

    Article  PubMed  CAS  Google Scholar 

  • Jolles J., Bothmer J., Markerink M. and Ravid R. 2006 Phosphatidylinositol kinase is reduced in Alzheimer’s disease. J. Neurochem. 58, 2326–2329.

    Article  Google Scholar 

  • Jovic M., Kean M. J., Dubankova A., Boura E., Gingras A. C., Brill J. A. et al. 2014 Endosomal sorting of VAMP3 is regulated by PI4K2A. J. Cell Sci. 127, 3745–3756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juhasz G., Hill J. H., Yan Y., Sass M., Baehrecke E. H., Backer J. M. et al. 2008 The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181, 655–666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung A. G., Labarerra C., Jansen A. M., Qvortrup K., Wild K. and Kjaerulff O. 2010 A Mutational analysis of the endophilin-A N-BAR domain performed in living flies. PLoS One 5, e9492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan N. L., Jain S., Lynch J. M., Pavese N., Abou-Sleiman P., Holton J. L. et al. 2005 Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain 128, 2786–2796.

    Article  PubMed  Google Scholar 

  • Knirr S., Santel A. and Renkawitz-Pohl R. 1997 Expression of the PI4P 5-kinase Drosophila homologue skittles in the germline suggests a role in spermatogenesis and oogenesis. Dev. Genes Evol. 207, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M., Waguri S., Chiba T., Murata S., Iwata J., Tanida I. et al. 2006 Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884.

    Article  PubMed  CAS  Google Scholar 

  • Krajewski K. M., Lewis R. A., Fuerst D. R., Turansky C., Hinderer S. R., Garbern J. et al. 2000 Neurological dysfunction and axonal degeneration in Charcot-marie-tooth disease type 1A. Brain 123, 1516–1527.

    Article  PubMed  Google Scholar 

  • Krebs C. E., Karkheiran S., Powell James C., Cao M., Makarov V., Darvish H. et al. 2013 The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum. Mutat. 34, 1200–1207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunisaki Y., Nishikimi A., Tanaka Y., Takii R., Noda M., Inayoshi A. et al. 2006 DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J. Cell Biol. 174, 647–652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurokawa T., Takasuga S., Sakata S., Yamaguchi S., Horie S., Homma K. J. et al. 2012 3’ Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP). Proc. Natl. Acad. Sci. USA 109, 10089–10094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyotani A., Azuma Y., Yamamoto I., Yoshida H., Mizuta I., Mizuno T. et al. 2016 Knockdown of the Drosophila FIG4 induces deficient locomotive behavior, shortening of motor neuron, axonal targeting aberration, reduction of life span and defects in eye development. Exp. Neurol. 277, 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Landman N., Jeong S. Y., Shin S. Y., Voronov S. V., Serban G., Kang M. S. et al. 2006 Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc. Natl. Acad. Sci. USA 103, 19524.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee S., Liu H. P., Lin W. Y., Guo H. and Lu B. 2010 LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J. Neurosci. 30, 16959–16969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levine T. P. and Munro S. 2001 Dual Targeting of Osh1p, a Yeast homologue of oxysterol-binding protein, to both the golgi and the nucleus-vacuole junction. Mol. Biol. Cell 12, 1633–1644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H. and Marshall A. J. 2015 Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal. 27, 1789–1798.

    Article  PubMed  CAS  Google Scholar 

  • Li S., Tiab L., Jiao X., Munier F. L., Zografos L., Frueh B. E. et al. 2005 Mutations in PIP5K3 are associated with Francois-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindmo K. and Stenmark H. 2006 Regulation of membrane traffic by phosphoinositide 3-kinases. J. Cell Sci. 119, 605.

    Article  PubMed  CAS  Google Scholar 

  • Ling D., Song H. J., Garza D., Neufeld T. P. and Salvaterra P. M. 2009 A beta 42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS One 4, e4201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y., Boukhelifa M., Tribble E., Morin-Kensicki E., Uetrecht A., Bear J. E. et al. 2008 The Sac1 phosphoinositide phosphatase regulates golgi membrane morphology and mitotic spindle organization in mammals. Mol. Biol. Cell 19, 3080–3096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo H. R. and Mondal S. 2015 Molecular control of PtdIns(3,4,5)P3 signaling in neutrophils. EMBO Rep. 16, 149–163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maehama T. and Dixon J. E. 1999 PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9, 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Malek M., Kielkowska A., Chessa T., Anderson K. E., Barneda D., Pir P. et al. 2017 PTEN regulates PI(3,4)P2 signaling downstream of class I PI3K. Mol. Cell 68, 566–580, e10.

    Google Scholar 

  • Manzoni C., Mamais A., Dihanich S., Abeti R., Soutar M. P. M., Plun-Favreau H. et al. 2013 Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim. Biophys. Acta 1833, 2900–2910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marshall J. G., Booth J. W., Stambolic V., Mak T., Balla T., Schreiber A. D. et al. 2001 Restricted accumulation of phosphatidylinositol 3-Kinase products in a plasmalemmal subdomain during Fc\(\upgamma \) receptor-mediated phagocytosis. J. Cell Biol. 153, 1369–1380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin-Belmonte F., Gassama A., Datta A., Yu W., Rescher U., Gerke V. et al. 2007 PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Vicente M., Talloczy Z., Wong E., Tang G., Koga H., Kaushik S. et al. 2010 Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat. Neurosci. 13, 567–576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mata I. F., Kachergus J. M., Taylor J. P., Lincoln S., Aasly J., Lynch T. et al. 2005 Lrrk2 pathogenic substitutions in Parkinson’s disease. Neurogenetics 6, 171–177.

    Article  PubMed  CAS  Google Scholar 

  • Matteis M. A. D. and Godi A. 2004 PI-loting membrane traffic. Nat. Cell Biol. 6, 487.

    Article  PubMed  CAS  Google Scholar 

  • Mayinger P. 2012 Phosphoinositides and vesicular membrane traffic. Biochim. Biophys. Acta 1821, 1104–1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McIntire L. B. J., Berman D. E., Myaeng J., Staniszewski A., Arancio O., Di Paolo G. et al. 2012 Reduction of synaptojanin 1 ameliorates synaptic and behavioral impairments in a mouse model of Alzheimer’s disease. J. Neurosci. 32, 15271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McPherson P. S., Garcia E. P., Slepnev V. I., David C., Zhang X., Grabs D. et al. 1996 A presynaptic inositol-5-phosphatase. Nature 379, 353.

    Article  PubMed  CAS  Google Scholar 

  • Melser S., Molino D., Batailler B., Peypelut M., Laloi M., Wattelet-Boyer V. et al. 2011 Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. Plant Cell Rep. 30, 177–193.

    Article  PubMed  CAS  Google Scholar 

  • Messa M., Fernandez-Busnadiego R., Sun E. W., Chen H., Czapla H., Wrasman K. et al. 2014 Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. Elife 3, e03311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milosevic I., Sorensen J. B., Lang T., Krauss M., Nagy G., Haucke V. et al. 2005 Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J. Neurosci. 25, 2557–2565.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Milosevic I., Giovedi S., Lou X., Raimondi A., Collesi C., Shen H. et al. 2011 Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72, 587–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizuno-Yamasaki E., Medkova M., Coleman J. and Novick P. 2010 Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p. Dev. Cell 18, 828–840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mochizuki Y., Ohashi R., Kawamura T., Iwanari H., Kodama T., Naito M. et al. 2013 Phosphatidylinositol 3-Phosphatase Myotubularin-related Protein 6 (MTMR6) is regulated by small GTPase Rab1B in the early secretory and autophagic pathways. J. Biol. Chem. 288, 1009–1021.

    Article  PubMed  CAS  Google Scholar 

  • Motley A., Bright N. A., Seaman M. N. and Robinson M. S. 2003 Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muhammad A., Flores I., Zhang H., Yu R., Staniszewski A., Planel E. et al. 2008 Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and a beta accumulation. Proc. Natl. Acad. Sci. USA 105, 7327–7332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray J. T., Panaretou C., Stenmark H., Miaczynska M. and Backer J. M. 2002 Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3, 416–427.

    Article  PubMed  CAS  Google Scholar 

  • Naughtin M. J., Sheffield D. A., Rahman P., Hughes W. E., Gurung R., Stow J. L. et al. 2010 The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J. Cell Sci. 123, 3071.

    Article  PubMed  CAS  Google Scholar 

  • Newton A. J., Kirchhausen T. and Murthy V. N. 2006 Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 103, 17955–17960.

  • Niebuhr K., Giuriato S., Pedron T., Philpott D. J., Gaits F., Sable J. et al. 2002 Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen E., Christoforidis S., Uttenweiler-Joseph S., Miaczynska M., Dewitte F., Wilm M. et al. 2000 Rabenosyn-5, a Novel Rab5 Effector, is complexed with Hvps45 and recruited to endosomes through a Fyve Finger Domain. J. Cell Biol. 151, 601–612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishikimi A., Fukuhara H., Su W., Hongu T., Takasuga S., Mihara H. et al. 2009 Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil Chemotaxis. Science 324, 384–387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obara K., Sekito T., Niimi K. and Ohsumi Y. 2008 The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283, 23972–23980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olgiati S., De Rosa A., Quadri M., Criscuolo C., Breedveld G. J., Picillo M. et al. 2014 PARK20 caused by SYNJ1 homozygous Arg258Gln mutation in a new Italian family. Neurogenetics 15, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Pan P. Y., Li X., Wang J., Powell J., Wang Q., Zhang Y. et al. 2017 Parkinson’s Disease-Associated LRRK2 hyperactive kinase mutant disrupts synaptic vesicle trafficking in ventral midbrain Neurons. J. Neurosci. 37, 11366–11376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J., Lee N., Kavoussi A., Seo J. T., Kim C. H. and Moon S. J. 2015 Ciliary Phosphoinositide regulates ciliary protein trafficking in Drosophila. Cell Rep. 13, 2808–2816.

    Article  PubMed  CAS  Google Scholar 

  • Parrish W. R., Stefan C. J. and Emr S. D. 2004 Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in Yeast. Mol. Biol. Cell 15, 3567–3579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Passemard S., Perez F., Colin-Lemesre E., Rasika S., Gressens P. and El Ghouzzi V. 2017 Golgi trafficking defects in postnatal microcephaly: the evidence for “Golgipathies”. Prog. Neurobiol. 153, 46–63.

    Article  PubMed  CAS  Google Scholar 

  • Pendleton R. G., Parvez F., Sayed M. and Hillman R. 2002 Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J. Pharmacol. Exp. Ther. 300, 91.

    Article  PubMed  CAS  Google Scholar 

  • Perera R. M., Zoncu R., Lucast L., De Camilli P. and Toomre D. 2006 Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc. Natl. Acad. Sci. USA 103, 19332–19337.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Periquet M., Fulga T., Myllykangas L., Schlossmacher M. G. and Feany M. B. 2007 Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J. Neurosci. 27, 3338.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Phillips S. E., Woodruff E. A., Liang P., Patten M. and Broadie K. 2008 Neuronal loss of Drosophila NPC1a causes cholesterol aggregation and age-progressive neurodegeneration. J. Neurosci. 28, 6569–6582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poehler A. M., Xiang W., Spitzer P., May V. E., Meixner H., Rockenstein E. et al. 2014 Autophagy modulates SNCA/alpha-synuclein release, thereby generating a hostile microenvironment. Autophagy 10, 2171–2192.

    Article  PubMed  CAS  Google Scholar 

  • Polevoy G., Wei H. C., Wong R., Szentpetery Z., Kim Y. J., Goldbach P. et al. 2009 Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis. J. Cell Biol. 187, 847–858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A. et al. 1997 Mutation in the \(\upalpha \)-Synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Poodry C. A. and Edgar L. 1979 Reversible alteration in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire. Cell Biol. 81, 520.

    Article  CAS  Google Scholar 

  • Quadri M., Fang M., Picillo M., Olgiati S., Breedveld Guido J., Graafland J. et al. 2013 Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum. Mutat. 34, 1208–1215.

    Article  PubMed  CAS  Google Scholar 

  • Ramel D., Lagarrigue F., Pons V., Mounier J., Dupuis-Coronas S., Chicanne G. et al. 2011 Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci. Signal. 4, ra61.

  • Rauh M. J., Kalesnikoff J., Hughes M., Sly L., Lam V. and Krystal G. 2003 Role of Src homology 2-containing-inositol 5’-phosphatase (SHIP) in mast cells and macrophages. Biochem. Soc. Trans. 31, 286.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt P., Schmid B., Burbulla L. F., Schondorf D. C., Wagner L., Glatza M. et al. 2013 Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12, 354–367.

    Article  PubMed  CAS  Google Scholar 

  • Ren Y., Xu H. W., Davey F., Taylor M., Aiton J., Coote P. et al. 2008 Endophilin I expression is increased in the brains of Alzheimer disease patients. J. Biol. Chem. 283, 5685–5691.

    Article  PubMed  CAS  Google Scholar 

  • Rink J., Ghigo E., Kalaidzidis Y. and Zerial M. 2005 Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749.

    Article  PubMed  CAS  Google Scholar 

  • Robinson F. L. and Dixon J. E. 2006 Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol. 16, 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Robinson F. L., Niesman I. R., Beiswenger K. K. and Dixon J. E. 2008 Loss of the inactive myotubularin-related phosphatase Mtmr13 leads to a Charcot-marie-tooth 4B2-like peripheral neuropathy in mice. Proc. Natl. Acad. Sci. USA 105, 4916–4921.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roggo L., Bernard V., Kovacs A. L., Rose A. M., Savoy F., Zetka M. et al. 2002 Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO J. 21, 1673–1683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rojas R., van Vlijmen T., Mardones G. A., Prabhu Y., Rojas A. L., Mohammed S. et al. 2008 Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roosen D. A. and Cookson M. R. 2016 LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol. Neurodegener. 11, 73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenthal J. A., Chen H., Slepnev V. I., Pellegrini L., Salcini A. E., Di Fiore P. P. et al. 1999 The Epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J. Biol. Chem. 274, 33959–33965.

    Article  PubMed  CAS  Google Scholar 

  • Rossor M. N., Fox N. C., Mummery C. J., Schott J. M. and Warren J. D. 2010 The diagnosis of young-onset dementia. Lancet Neurol. 9, 793–806.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudenko I. N. and Cookson M. R. 2014 Heterogeneity of leucine-rich repeat kinase 2 mutations: genetics, mechanisms and therapeutic implications. Neurotherapeutics 11, 738–750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rusten T. E., Rodahl L. M. W., Pattni K., Englund C., Samakovlis C., Dove S. et al. 2006 Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol. Biol. Cell 17, 3989–4001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rutherford A. C., Traer C., Wassmer T., Pattni K., Bujny M. V., Carlton J. G. et al. 2006 The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J. Cell Sci. 119, 3944–3957.

    Article  PubMed  CAS  Google Scholar 

  • Sá F., Pinto P., Cunha C., Lemos R., Letra L., Simões M. et al. 2012 Differences between Early and late-onset Alzheimer’s disease in neuropsychological tests. Front. Neurol. 3, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saarikangas J., Zhao H. and Lappalainen P. 2010 Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 90, 259–289.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi-Nakashima A., Meir J. Y., Jin Y., Matsumoto K. and Hisamoto N. 2007 LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr. Biol. 17, 592–598.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Danes A., Richaud-Patin Y., Carballo-Carbajal I., Jimenez-Delgado S., Caig C., Mora S. et al. 2012 Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol. Med. 4, 380–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schu P. V., Takegawa K., Fry M. J., Stack J. H., Waterfield M. D. and Emr S. D. 1993 Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88.

    Article  PubMed  CAS  Google Scholar 

  • Segawa T., Hazeki K., Nigorikawa K., Morioka S., Guo Y., Takasuga S. et al. 2014 Inpp5e increases the Rab5 association and phosphatidylinositol 3-phosphate accumulation at the phagosome through an interaction with Rab20. Biochem. J. 464, 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Semerdjieva S., Shortt B., Maxwell E., Singh S., Fonarev P., Hansen J. et al. 2008 Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J. Cell Biol. 183, 499–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seshadri S., Fitzpatrick A. L., Arfan Ikram M., DeStefano A. L., Gudnason V., Boada M. et al. 2010 Genome-wide analysis of genetic loci associated with Alzheimer’s disease. JAMA 303, 1832–1840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinozaki-Narikawa N., Kodama T. and Shibasaki Y. 2006 Cooperation of phosphoinositides and BAR domain proteins in endosomal tubulation. Traffic 7, 1539–1550.

    Article  PubMed  CAS  Google Scholar 

  • Shintani T., Suzuki K., Kamada Y., Noda T. and Ohsumi Y. 2001 Apg2p Functions in Autophagosome Formation on the Perivacuolar Structure. J. Biol. Chem. 276, 30452–30460.

    Article  PubMed  CAS  Google Scholar 

  • Shupliakov O., Löw P., Grabs D., Gad H., Chen H., David C. et al. 1997 Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259.

    Article  PubMed  CAS  Google Scholar 

  • Simons J. P., Al-Shawi R., Minogue S., Waugh M. G., Wiedemann C., Evangelou S. et al. 2009 Loss of phosphatidylinositol 4-kinase 2alpha activity causes late onset degeneration of spinal cord axons. Proc. Natl. Acad. Sci. USA 106, 11535–1159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonsen A., Lippe R., Christoforidis S., Gaullier J.-M., Brech A., Callaghan J. et al. 1998 EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494.

    Article  PubMed  CAS  Google Scholar 

  • Sonoda Y., Mukai H., Matsuo K., Takahashi M., Ono Y., Maeda K. et al. 2010 Accumulation of tumor-suppressor PTEN in Alzheimer neurofibrillary tangles. Neurosci. Lett. 471, 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Steger M., Tonelli F., Ito G., Davies P., Trost M., Vetter M. et al. 2016 Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. Elife 5.

  • Stein M.-P., Feng Y., Cooper K. L., Welford A. M. and Wandinger-Ness A. 2003 Human VPS34 and p150 are Rab7 interacting partners. Traffic 4, 754–771.

    Article  PubMed  CAS  Google Scholar 

  • Tai A. W., Bojjireddy N. and Balla T. 2011 A homogeneous and nonisotopic assay for phosphatidylinositol 4-kinases. Anal. Biochem. 417, 97–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan M. S., Yu J. T. and Tan L. 2013 Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol. Med. 19, 594–603.

    Article  PubMed  CAS  Google Scholar 

  • Taylor G. S., Maehama T. and Dixon J. E. 2000 Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc. Natl. Acad. Sci. USA 97, 8910.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tebar F., Bohlander S. K. and Sorkin A. 1999 Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol. Biol. Cell 10, 2687–2702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tolias K. F., Rameh L. E., Ishihara H., Shibasaki Y., Chen J., Prestwich G. D. et al. 1998 Type I Phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J. Biol. Chem. 273, 18040–18046.

    Article  PubMed  CAS  Google Scholar 

  • Tsujita K., Itoh T., Ijuin T., Yamamoto A., Shisheva A., Laporte J. et al. 2004 Myotubularin regulates the function of the late endosome through the GRAM Domain-phosphatidylinositol 3,5-bisphosphate Interaction. J. Biol. Chem. 279, 13817–13824.

    Article  PubMed  CAS  Google Scholar 

  • Vaccari I., Dina G., Tronchère H., Kaufman E., Chicanne G., Cerri F. et al. 2011 Genetic Interaction between MTMR2 and FIG4 Phospholipid phosphatases involved in Charcot-marie-tooth neuropathies. PLoS Genet. 7, e1002319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Horck F. P. G., Lavazais E., Eickholt B. J., Moolenaar W. H. and Divecha N. 2002 Essential role of type I\(\upalpha \) phosphatidylinositol 4-phosphate 5-kinase in neurite Remodeling. Curr. Biol. 12, 241–245.

    Article  PubMed  Google Scholar 

  • van Meer G. and de Kroon A. I. P. M. 2011 Lipid map of the mammalian cell. J. Cell Sci. 124, 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Vavlitou N., Sargiannidou I., Markoullis K., Kyriacou K., Scherer S. S. and Kleopa K. A. 2010 Axonal pathology precedes demyelination in a mouse model of X-Linked demyelinating/type I Charcot-marie tooth neuropathy. J. Neuropathol. Exp. Neurol. 69, 945–958.

    Article  PubMed  CAS  Google Scholar 

  • Velichkova M., Juan J., Kadandale P., Jean S., Ribeiro I., Raman V. et al. 2010 Drosophila Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions. J. Cell Biol. 190, 407–425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verstreken P., Koh T.-W., Schulze K. L., Zhai R. G., Hiesinger P. R., Zhou Y. et al. 2003 Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748.

    Article  PubMed  CAS  Google Scholar 

  • Vieira O. V., Botelho R. J., Rameh L., Brachmann S. M., Matsuo T., Davidson H. W. et al. 2001 Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voronov S. V., Frere S. G., Giovedi S., Pollina E. A., Borel C., Zhang H. et al. 2008 Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc. Natl. Acad. Sci. USA 105, 9415–9420.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y. J., Wang J., Sun H. Q., Martinez M., Sun Y. X., Macia E. et al. 2003 Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310.

    Article  PubMed  CAS  Google Scholar 

  • Wang J., Sun H.-Q., Macia E., Kirchhausen T., Watson H., Bonifacino J. S. et al. 2007 PI4P Promotes the recruitment of the GGA adaptor proteins to the trans-golgi network and regulates their recognition of the Ubiquitin sorting Signal. Mol. Biol. Cell 18, 2646–2655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang K., Yang Z., Liu X., Mao K., Nair U. and Klionsky D. J. 2012 Phosphatidylinositol 4-Kinases are required for autophagic membrane trafficking. J. Biol. Chem. 287, 37964–37972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang D. B., Kinoshita Y., Kinoshita C., Uo T., Sopher B. L., Cudaback E. et al. 2015 Loss of endophilin-B1 exacerbates Alzheimer’s disease pathology. Brain 138, 2005–2019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D. B., Uo T., Kinoshita C., Sopher B. L., Lee R. J., Murphy S. P. et al. 2014a Bax Interacting factor-1 promotes survival and mitochondrial elongation in neurons. J. Neurosci. 34, 2674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S., Ma Z., Xu X., Wang Z., Sun L., Zhou Y. et al. 2014b A role of Rab29 in the integrity of the trans-Golgi network and retrograde trafficking of mannose-6-phosphate receptor. PLoS One 9, e96242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waschbusch D., Michels H., Strassheim S., Ossendorf E., Kessler D., Gloeckner C. J. et al. 2014 LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS One 9, e111632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waugh M. G., Minogue S., Chotai D., Berditchevski F. and Hsuan J. J. 2006 Lipid and Peptide control of phosphatidylinositol 4-kinase II\(\upalpha \) activity on golgi-endosomal Rafts. J. Biol. Chem. 281, 3757–3763.

    Article  PubMed  CAS  Google Scholar 

  • Weinkove D., Bastiani M., Chessa T. A., Joshi D., Hauth L., Cooke F. T. et al. 2008 Overexpression of PPK-1, the caenorhabditis elegans type I PIP kinase, inhibits growth cone collapse in the developing nervous system and causes axonal degeneration in adults. Dev. Biol. 313, 384–397.

    Article  PubMed  CAS  Google Scholar 

  • Winslow A. R., Chen C. W., Corrochano S., Acevedo-Arozena A., Gordon D. E., Peden A. A. et al. 2010 Alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190, 1023–1037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu F., Matsuoka Y., Mattson M. P. and Yao P. J. 2009 The clathrin assembly protein AP180 regulates the generation of amyloid-beta peptide. Biochem. Biophys. Res. Commun. 385, 247–250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X., Guo H., Wycuff D. L. and Lee M. 2007 Role of phosphatidylinositol-4-phosphate 5\(^\prime \) kinase (ppk-1) in ovulation of Caenorhabditis elegans. Exp. Cell Res. 313, 2465–2475.

  • Yamaguchi H., Arakawa S., Kanaseki T., Miyatsuka T., Fujitani Y., Watada H. et al. 2016 Golgi membrane-associated degradation pathway in yeast and mammals. EMBO J. 35, 1991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto A., DeWald D. B., Boronenkov I. V., Anderson R. A., Emr S. D. and Koshland D. 1995 Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol. Biol. Cell 6, 525–539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang A. J., Chandswangbhuvana D., Margol L. and Glabe C. G. 1998 Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid A\(\upbeta \)1-42 pathogenesis. J. Neurosci. Res. 52, 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Yao P. J., Morsch R., Callahan L. M. and Coleman P. D. 1999 Changes in synaptic expression of clathrin assembly protein AP180 in Alzheimer’s disease analysed by immunohistochemistry. Neuroscience 94, 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Yao C., El Khoury R., Wang W., Byrd T. A., Pehek E. A., Thacker C. et al. 2010 LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson’s disease. Neurobiol. Dis. 40, 73–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon Y., Zhang X. and Cho W. 2012 Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/amphiphysin/Rvs (BAR) domains. J. Biol. Chem. 287, 34078–34090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu J. W., Mendrola J. M., Audhya A., Singh S., Keleti D., DeWald D. B. et al. 2004 Genome-wide analysis of membrane targeting by S. cerevisiae Pleckstrin homology domains. Mol. Cell 13, 677–688.

    Article  PubMed  CAS  Google Scholar 

  • Zhao C., Takita J., Tanaka Y., Setou M., Nakagawa T., Takeda S. et al. 2001 Charcot-marie-tooth disease type 2A caused by mutation in a microtubule motor KIF1BBeta. Cell 105, 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Zhong Q., Lazar C. S., Tronchere H., Sato T., Meerloo T., Yeo M. et al. 2002 Endosomal localization and function of sorting nexin 1. Proc. Natl. Acad. Sci. USA 99, 6767–6772.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu L., Zhong M., Elder G. A., Sano M., Holtzman D. M., Gandy S. et al. 2015 Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc. Natl. Acad. Sci. USA 112, 11965.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., Lincoln S. et al. 2004 Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Zubenko G. S., Stiffler J. S., Hughes H. B. and Martinez A. J. 1999 Reductions in brain phosphatidylinositol kinase activities in Alzheimer’s disease. Biol. Psychiatry 45, 731–736.

    Article  PubMed  CAS  Google Scholar 

  • Zuchner S., Noureddine M., Kennerson M., Verhoeven K., Claeys K., De Jonghe P. et al. 2005 Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-marie-tooth disease. Nat. Genet. 37, 289–294.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Amruta Vasudevan for comments on the manuscript. Research in the SPK lab is supported by HHMI-IECS to SPK and by TIFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya P. Koushika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadiminti, S.S.P., Kamak, M. & Koushika, S.P. Tied up: Does altering phosphoinositide-mediated membrane trafficking influence neurodegenerative disease phenotypes?. J Genet 97, 753–771 (2018). https://doi.org/10.1007/s12041-018-0961-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0961-5

Keywords

Navigation