Skip to main content
Log in

Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize

Journal of Genetics Aims and scope Submit manuscript

Abstract

Maize is a valuable source of food and feed worldwide. Maize endosperm protein is, however nutritionally poor due to the reduced levels of two essential amino acids, lysine and tryptophan. In this study, recessive opaque2 (o2) allele that confers enhanced endosperm lysine and tryptophan, was introgressed using marker-assisted backcross breeding into three normal inbred lines (HKI323, HKI1105 and HKI1128). These are the parental lines of three popular medium-maturing single cross hybrids (HM4, HM8 and HM9) in India. Gene-based simple sequence repeat (SSR) markers (umc1066 and phi057) were successfully deployed for introgression of o2 allele. Background selection using genome-based SSRs helped in recovering \(>96\%\) of recurrent parent genome. The newly developed quality protein maize (QPM) inbreds showed modified kernels (25–50% opaqueness) coupled with high degree of phenotypic resemblance to the respective recipient lines, including grain yield. In addition, endosperm protein quality showed increased lysine and tryptophan in the inbreds to the range of 52–95% and 47–118%, respectively. The reconstituted QPM hybrids recorded significant enhancement of endosperm lysine (48–74%) and tryptophan (55–100%) in the endosperm. The QPM hybrids exhibited high phenotypic similarity with the original hybrids for morphological and yield contributing traits along with responses to some major diseases like turcicum leaf blight and maydis leaf blight. The grain yield of QPM hybrids was at par with their original versions under multilocation testing. These elite, high-yielding QPM hybrids with improved protein quality have been released and notified for commercial cultivation, and hold significant promise for improving nutritional security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • AOAC 1965 Official methods of analysis of the association of official agricultural chemists, 10th edition. pp. 744–745.

  • Annual Progress Report Kharif Maize 2014. 2015 All India coordinated research project on maize. Indian Institute of Maize Research, pp. 1067. Pusa Campus, New Delhi.

  • Annual Progress Report Kharif Maize 2015. 2016 All India coordinated research project on maize. Indian Institute of Maize Research, pp. 999. Pusa Campus, New Delhi.

  • Babu B. K., Agrawal P. K., Saha S. and Gupta H. S. 2015 Mapping QTLs for opaque2 modifiers influencing the tryptophan content in quality protein maize using genomic and candidate gene-based SSRs of lysine and tryptophan metabolic pathway. Plant Cell Rep.  34, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Babu R., Nair S. K., Kumar A., Venkatesh S., Sekhar J. C., Singh N. N. et al. 2005 Two generation marker aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor. Appl. Genet.  111, 888–897.

    Article  CAS  PubMed  Google Scholar 

  • Bjarnason M. and Vasal S. K. 1992 Breeding of quality protein maize (QPM). Plant Breed. Rev.  9, 181–216.

    CAS  Google Scholar 

  • Bouis H. E., Hotz C., McClafferty B., Meenakshi J. V. and Pfeiffer W. H. 2011 Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull.  32, S31–S40.

    Article  PubMed  Google Scholar 

  • Choudhary M., Muthusamy V., Hossain F., Thirunavukkarasu N., Pandey N., Jha S. K. and Gupta H. S. 2014 Characterization of \(\upbeta \)-carotene rich MAS-derived maize inbreds possessing rare genetic variation in \(\beta \)-carotene hydroxylase gene. Indian J. Genet. Plant Breed.  74, 620–623.

    Article  Google Scholar 

  • Geevers H. O. and Lake J. K. 1992 Development of modified opaque2 maize in South Africa. In Quality protein maize (ed. E. T. Mertz), American Society of Cereal Chemists, pp. 49–78. St Paul, Minnesota.

  • Gunjaca J., Buhinicek I., Jukic M., Sarcevic H., Vragolovic A., Kozic Z. et al. 2008 Discriminating maize inbred lines using molecular and DUS data. Euphytica  161, 165–172.

    Article  CAS  Google Scholar 

  • Gupta H. S., Babu R., Agrawal P. K., Mahajan V., Hossain F. and Nepolean T. 2013 Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed.  132, 77–82.

    Article  CAS  Google Scholar 

  • Gupta H. S., Hossain F. and Muthusamy V. 2015 Biofortification of maize: an Indian perspective. Indian J. Genet. Plant Breed.  75, 1–22.

    Article  Google Scholar 

  • Habben I. E., Kirleis A. W. and Larkins B. A. 1993 The origin of lysine-containing proteins in opaque-2 maize endosperm. Plant Mol. Biol.  23, 825–838.

    Article  CAS  PubMed  Google Scholar 

  • Hossain F., Prasanna B. M., Kumar R. and Singh B. B. 2008 Genetic analysis of kernel modification in Quality Protein Maize (QPM) genotypes. Indian J. Genet. Plant Breed.  68, 1–9.

    CAS  Google Scholar 

  • Jia M., Wu H., Clay K. L., Jung R., Larkins B. A. and Gibbon B. C. 2013 Identification and characterization of lysine-rich proteins and starch biosynthesis genes in the opaque2 mutant by transcriptional and proteomic analysis. BMC Plant Biol. 13, 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jompuk C., Cheuchart P., Jompuk P. and Apisitwanich S. 2011 Improved tryptophan content in maize with opaque-2 gene using marker assisted selection (MAS) in backcross and selfing generations. Kasetsart J. (Nat. Sci.)  45, 666–674.

    CAS  Google Scholar 

  • Kaul J., Dass S., Sekhar J. C. and Bhardwaj J. C. 2009 Maize hybrid and composite varieties released in India. DMR Technical Bulletin 2009/8. Directorate of Maize Research, vol. 2, pp. 40. Pusa Campus, New Delhi.

  • Kemper E. L., Neto C. G., Papes F., Moraes M. K. C. and Leite A. 1999 The role of opaque2 in the control of lysine-degrading activities in developing maize endosperm. Plant Cell  11, 1981–1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H., Romero-Severson J. and Bernardo R. 2002 Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet.  105, 622–628.

    Article  CAS  PubMed  Google Scholar 

  • Manna R., Okello D. K., Imanywoha J., Pixley K. and Edema R. 2005 Enhancing introgression of the opaque-2 trait into elite maize lines using simple sequence repeats. Af. Crop Sci. J.  13, 215–226.

    Google Scholar 

  • Mertz E. T., Bates L. S. and Nelson O. E. 1964 Mutant genes that change protein composition and increase lysine content of maize endosperm. Science  145, 279–280.

    Article  CAS  PubMed  Google Scholar 

  • Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res.  8, 4321–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthusamy V., Hossain F., Thirunavukkarasu N., Choudhary M., Saha S., Bhat J. et al. 2014 Development of \(\upbeta \)-carotene rich maize hybrids through marker assisted introgression of \(\upbeta \)-carotene hydroxylase allele. PLoS One  9, e113583.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naidoo R., Watson G. M. F., Derera J., Tongoona P. and Laing M. D. 2012 Marker-assisted selection for low phytic acid (lpa1-1) with single nucleotide polymorphism marker and amplified fragment length polymorphisms for background selection in a maize backcross breeding programme. Mol. Breed.  30, 1207–1217.

    Article  CAS  Google Scholar 

  • Paez A. V. 1973 Protein quality and kernel properties of modified opaque-2 endosperm corn involving a recessive allele at the sugary-2 locus. Crop Sci.  13, 633–636.

    Article  CAS  Google Scholar 

  • Pandey N., Hossain F., Kumar K., Vishwakarma A. K., Muthusamy V., Saha S. et al. 2015 Molecular characterization of endosperm- and amino acids- modifications among quality protein maize inbreds. Plant Breed. https://doi.org/10.1111/pbr.12328.

  • PPVFRA. 2007 Guidelines for the conduct of test for distinctiveness, uniformity and stability on maize (Zea mays L.) 13.

  • Prasanna B. M., Pixley K. V., Warburton M. and Xie C. 2010 Molecular marker-assisted breeding for maize improvement in Asia. Mol. Breed.  26, 339–356.

    Article  CAS  Google Scholar 

  • Prasanna B. M., Vasal S. K., Kassahun B. and Singh N. N. 2001 Quality protein Maize. Curr. Sci.  81, 1308–1319.

    CAS  Google Scholar 

  • Sarika K., Hossain F., Muthusamy V., Baveja A., Zunjare R., Goswami R. et al. 2016 Exploration of novel opaque16 mutation as a source for high -lysine and -tryptophan in maize endosperm. Indian J. Genet.  77, 59–64.

    Google Scholar 

  • Shiferaw B., Prasanna B. M., Hellin J. and Banziger M. 2011 Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur.  3, 307–327.

    Article  Google Scholar 

  • Temba M. C., Njobeh P. B., Adebo O. A., Olugbile A. O. and Kayitesi E. 2016 The role of compositing cereals with legumes to alleviate protein energy malnutrition in Africa. J. Food Sci. Tech. https://doi.org/10.1111/ijfs.1303.

  • Vasal S. K., Villegas E., Bajarnason M., Gelaw B. and Geirtz P. 1980 Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. In Improvement of quality traits for silage use (ed. W. G. Pollmer and R. H. Philips), pp. 37–71. Martinus Nijhoff Publishers, Hague.

    Google Scholar 

  • Villegas E., Vasal S. K. and Bjarnason M. 1992 Quality protein maize - what is it and how was it developed. In: Quality protein maize (ed. E. T. Mertz), American Association of Cereal Chemists, pp. 27–48. St Paul, Minnesota.

  • Yadav O. P., Hossain F., Karjagi C. G., Kumar B., Zaidi P. H., Jat S. L. et al. 2015 Genetic improvement of maize in India: retrospect and prospects. Agri. Res.  4, 325–338.

    CAS  Google Scholar 

  • Yang W., Zheng Y., Ni S. and Wu J. 2004 Recessive allelic variations of three microsatellite sites within the \(O2\) gene in maize. Plant Mol. Bio. Rep.  22, 361–374.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Department of Biotechnology, Government of India, through the project entitled ‘Rapid conversion of normal maize inbreds to quality protein maize and further enhancement of limiting amino acids in elite inbreds through marker-assisted selection’ (BT/PR11708/AGR/02/649/2008) is gratefully acknowledged. We thank Dr Sain Dass, former Director, ICAR-IIMR, New Delhi for his valuable suggestions. We also thank ICAR-IIMR, New Delhi; CCSHAU, Uchani; and CIMMYT, Mexico, for sharing the inbred lines, used in this study. The support of AICRP-Maize in conducting the multilocation trials is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firoz Hossain.

Additional information

Corresponding editor: Arun Joshi

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, F., Muthusamy, V., Pandey, N. et al. Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J Genet 97, 287–298 (2018). https://doi.org/10.1007/s12041-018-0914-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0914-z

Keywords

Navigation