Skip to main content
Log in

Genetic variants of FOXP1 and FOXF1 are associated with the susceptibility of oesophageal adenocarcinoma in Chinese population

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

This study aimed to investigate whether the genetic variants of CRTC1, BARX1, FOXP1 and FOXF1 are associated with the development of oesophageal adenocarcinoma (OA) in Chinese population. A total of 744 OA patients and 1138 controls were included in this study. Here we genotyped four SNPs, rs10419226 of CRTC1, rs11789015 of BARX1, rs2687201 of FOXP1 and rs3111601 of FOXF1. The chi-square test was used to compare the genotype and allele frequencies between the patients and controls. The student’s t-test was used to compare FOXP1 expression in the tumour and the adjacent normal tissues. The relationship between genotypes of rs2687201 and FOXP1 expression was investigated by one-way analysis of variance test. Patients were found to have significantly higher frequency of allele A of rs2687201 and allele C of rs3111601 when compared with the controls (49.2 vs 43.4%, \(P = 0.0008\) for rs2687201; 29.1 vs 24.0%, \(P = 0.0003\) for rs3111601). There was a significantly higher expression level of FOXP1 in the tumour than in the adjacent normal tissue (0.0052 ± 0.0021 vs 0.0027 ± 0.0018, \(P < 0.001\)). Patients with genotype AA were found to have remarkably higher FOXP1 expression in the tumour than those with genotype CC (\(P = 0.01\)). To conclude, the varients of FOXP1 and FOXF1 genes are functionally associated with OA in Chinese population. With the identification of more susceptible loci, the combined effect of these markers may be helpful for the surveillance of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aken B. L., Ayling S., Barrell D., Clarke L., Curwen V., Fairley S. et al. 2016 The Ensembl gene annotation system. Database (Oxford).

  • Babar M., Ryan A. W., Anderson L. A., Segurado R., Turner G., Murray L. J. et al. 2012 Genes of the interleukin-18 pathway are associated with susceptibility to Barrett’s esophagus and esophageal adenocarcinoma. Am. J. Gastroenterol. 107, 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  • Becker J., May A., Gerges C., Anders M., Veits L., Weise K. et al. 2015 Supportive evidence for FOXP1, BARX1, and FOXF1 as genetic risk loci for the development of esophageal adenocarcinoma. Cancer Med. 4, 1700–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buas M. F., Levine D. M., Makar K. W., Utsugi H., Onstad L., Li X. et al. 2014 Integrative post-genome-wide association analysis of CDKN2A and TP53 SNPs and risk of esophageal adenocarcinoma. Carcinogenesis 35, 2740–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium G. T. 2015 Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660.

    Article  Google Scholar 

  • Dai J. Y., de Dieu Tapsoba J., Buas M. F., Onstad L. E., Levine D. M., Risch H. A. et al. 2015 A newly identified susceptibility locus near FOXP1 modifies the association of gastroesophageal reflux with Barrett’s esophagus. Cancer Epidemiol. Biomarkers Prev. 24, 1739–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doecke J., Zhao Z. Z., Pandeya N., Sadeghi S., Stark M., Green A. C. et al. 2008 Polymorphisms in MGMT and DNA repair genes and the risk of esophageal adenocarcinoma. Int. J. Cancer 123, 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Dura P., van Veen E. M., Salomon J., te Morsche R. H., Roelofs H. M., Kristinsson J. O. et al. 2013 Barrett associated MHC and FOXF1 variants also increase esophageal carcinoma risk. Int. J. Cancer 133, 1751–1755.

    Article  CAS  PubMed  Google Scholar 

  • Engel L. S., Chow W. H., Vaughan T. L., Gammon M. D., Risch H. A., Stanford J. L. et al. 2003 Population attributable risks of esophageal and gastric cancers. J. Natl. Cancer Inst. 95, 1404–1413.

    Article  PubMed  Google Scholar 

  • Freedman N. D., Abnet C. C., Leitzmann M. F., Mouw T., Subar A. F., Hollenbeck A. R. et al. 2007 A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am. J. Epidemiol. 165, 1424–1433.

    Article  PubMed  Google Scholar 

  • Hur C., Miller M., Kong C. Y., Dowling E. C., Nattinger K. J., Dunn M. et al. 2013 Trends in esophageal adenocarcinoma incidence and mortality. Cancer 119, 1149–1158.

    Article  PubMed  Google Scholar 

  • Kong C. Y., Kroep S., Curtius K., Hazelton W. D., Jeon J., Meza R. et al. 2014 Exploring the recent trend in esophageal adenocarcinoma incidence and mortality using comparative simulation modeling. Cancer Epidemiol. Biomarkers Prev. 23, 997–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koon H. B., Ippolito G. C., Banham A. H. and Tucker P. W. 2007 FOXP1: a potential therapeutic target in cancer. Expert Opin. Ther. Targets 11, 955–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanuti M., Liu G., Goodwin J. M., Zhai R., Fuchs B. C., Asomaning K. et al. 2008 A functional epidermal growth factor (EGF) polymorphism, EGF serum levels, and esophageal adenocarcinoma risk and outcome. Clin. Cancer Res. 14, 3216–3222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine D. M., Ek W. E., Zhang R., Liu X., Onstad L., Sather C. et al. 2013 A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat. Genet. 45, 1487–1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menke V., van Zoest K. P., Moons L. M., Hansen B., Pot R. G., Siersema P. D. et al. 2012 NcoI TNF-beta gene polymorphism and TNF expression are associated with an increased risk of developing Barrett’s esophagus and esophageal adenocarcinoma. Scand. J. Gastroenterol. 47, 378–386.

    Article  CAS  PubMed  Google Scholar 

  • Navab F., Nathanson B. H. and Desilets D. J. 2015 The impact of lifestyle on Barrett’s esophagus: a precursor to esophageal adenocarcinoma. Cancer Epidemiol. 39, 885–891.

    Article  PubMed  Google Scholar 

  • Qiao Y., Hyder A., Bae S. J., Zarin W., O’Neill T. J., Marcon N. E. et al. 2015 Surveillance in patients with Barrett’s esophagus for early detection of esophageal sdenocarcinoma: a systematic review and meta-analysis. Clin. Transl. Gastroenterol. 6, e131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice T. W., Blackstone E. H. and Rusch V. W. 2010 7th edition of the AJCC cancer staging manual: esophagus and esophagogastric junction. Ann. Surg. Oncol. 17, 1721–1724.

    Article  PubMed  Google Scholar 

  • Sampliner R. E. 2005 Epidemiology, pathophysiology, and treatment of Barrett’s esophagus: reducing mortality from esophageal adenocarcinoma. Med. Clin. North Am. 89, 293–312.

    Article  PubMed  Google Scholar 

  • Sappati Biyyani R. S., Chessler L., McCain E., Nelson K., Fahmy N. and King J. 2007 Familial trends of inheritance in gastro esophageal reflux disease, Barrett’s esophagus and Barrett’s adenocarcinoma: 20 families. Dis. Esophagus. 20, 53–57.

    Article  CAS  PubMed  Google Scholar 

  • Shu W., Lu M. M., Zhang Y., Tucker P. W., Zhou D. and Morrisey E. E. 2007 Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134, 1991–2000.

    Article  CAS  PubMed  Google Scholar 

  • Su Z., Gay L. J., Strange A., Palles C., Band G., Whiteman D. C. et al. 2012 Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett’s esophagus. Nat. Genet. 44, 1131–1136.

    Article  CAS  PubMed  Google Scholar 

  • Trudgill N. 2002 Familial factors in the etiology of gastroesophageal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma. Chest Surg. Clin. N. Am. 12, 15–24.

    Article  PubMed  Google Scholar 

  • van Nistelrooij A. M., van der Korput H. A., Broer L., van Marion R., van Berge Henegouwen M. I., van Noesel C. J. et al. 2015 Single nucleotide polymorphisms in CRTC1 and BARX1 are associated with esophageal adenocarcinoma. J. Carcinog. 14, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wlodarska I., Veyt E., De Paepe P., Vandenberghe P., Nooijen P., Theate I. et al. 2005 FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 19, 1299–1305.

    Article  CAS  PubMed  Google Scholar 

  • Wolf W. A., Pasricha S., Cotton C., Li N., Triadafilopoulos G., Muthusamy V. R. et al. 2015 Incidence of esophageal adenocarcinoma and causes of mortality after radiofrequency ablation of Barrett’s esophagus. Gastroenterology 149, 1752–1761.

  • Zhang Y., Zhang S., Wang X., Liu J., Yang L., He S. et al. 2012 Prognostic significance of FOXP1 as an oncogene in hepatocellular carcinoma. J. Clin. Pathol. 65, 528–533.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr Haozhong Hu for his assistance in the proof reading of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yang.

Additional information

Corresponding editor: Dhavendra Kumar

Jie Zhang and Jiebin Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, J., Ma, T. et al. Genetic variants of FOXP1 and FOXF1 are associated with the susceptibility of oesophageal adenocarcinoma in Chinese population. J Genet 97, 213–218 (2018). https://doi.org/10.1007/s12041-018-0910-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0910-3

Keywords

Navigation