Skip to main content
Log in

Quantitative trait loci mapping for stomatal traits in interspecific hybrids of Eucalyptus

  • RESEARCH NOTE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Eucalyptus is an important industrial species with tolerance to drought and salt stress. Genetic improvement activities including quantitative trait loci (QTL) mapping for pulping and adventitious rooting traits are in progress, but no information is available on the genomic regions on adaptive traits such as stomatal characteristics. In this study, an interspecific cross between Eucalyptus tereticornis and E. grandis was generated for the development of genetic map and QTL identification for stomatal traits. Simple sequence repeats (SSRs), inter-simple sequence repeats (ISSRs) and sequence related amplified polymorphism (SRAP) markers were used for genotyping the \(\hbox {F}_1\) individuals. Parent-specific genetic maps (female, 1023.56 cM; male, 1049.64cM) and consensus map (1049.4 cM) were developed. QTL analysis was carried out to identify the chromosomal regions affecting stomatal density, area and pore length in adaxial and abaxial leaf surface. Seven QTLs were identified with phenotypic variation of 11.36 to 27.30% for stomatal density, area and pore length. Correlation of stomatal traits when combined with growth and wood properties would have greater implications for generation of stress tolerant eucalypt hybrids with higher productivity and adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Arumugasundaram S., Ghosh M., Veerasamy S. and Ramasamy Y. 2011 Species discrimination, population structure and linkage disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis using SSR markers. PLoS One. 6, e28252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasaravanan T., Chezhian P., Kamalakannan R., Ghosh M., Yasodha R., Varghese M. and Gurumurthi K. 2005 Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR). Tree Physiol. 25, 1295–302.

    Article  CAS  PubMed  Google Scholar 

  • Chaves M. M., Costa J. M., Zarrouk O., Pinheiro C., Lopes C. M. and Pereira J. S. 2016 Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? Plant Sci. 251, 54–64.

    Article  CAS  PubMed  Google Scholar 

  • Freeman J. S. 2014 Molecular linkage maps of Eucalyptus: strategies, resources and achievements. In Genetics, genomics and breeding of eucalyptus (ed. R. J. Henry and C. Kole), pp. 58–74. CRC Press, Boca Raton.

    Google Scholar 

  • Gailing O., Langenfeld-Hyeser R., Polle A. and Finkeldey R. 2008 Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments. Glob. Change Biol. 14, 1934–1946.

    Article  Google Scholar 

  • Gion J. M., Carouche A., Deweer S., Bedon F., Pichavant F., Charpentier J. P. et al. 2011 Comprehensive genetic dissection of wood properties in a widely grown tropical tree: Eucalyptus. BMC Genomics. 12, 301.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grattapaglia D., Mamani E. M. C., Silva-Junior O. B. and Faria D. 2015 A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence. Mol. Ecol. Resour. 15, 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Hall D., Hallingbäck H. R. and Wu H. X. 2016 Estimation of number and size of QTL effects in forest tree traits. Tree Genet. Genomes. 12, 110.

    Article  Google Scholar 

  • Hart P. W. and Santos R. B. 2015 Changing the face of short fiber - a review of the Eucalyptus revolution. Tappi J. 14, 353–359.

    CAS  Google Scholar 

  • Henry R. and Kole C. 2014 Genetics, genomics and breeding of eucalypts. Boca Raton, CRC Press.

    Google Scholar 

  • Héroult A., Lin Y. S., Bourne A., Medlyn B. E. and Ellsworth D. S. 2013 Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought. Plant Cell Environ. 36, 262–274.

    Article  PubMed  Google Scholar 

  • James S. A. and Bell D. T. 2000 Leaf orientation, light interception and stomatal conductance of Eucalyptus globulus ssp. globulus leaves. Tree Physiol. 20, 815–823.

    Article  PubMed  Google Scholar 

  • Kullan A. R. K., Van Dyk M. M., Jones N., Kanzler A., Bayley A. and Myburg A. A. 2012 High-density genetic linkage maps with over 2,400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis \(\times \) E. urophylla. Tree Genet. Genomes. 8, 163–175.

    Article  Google Scholar 

  • Li F., Zhou C., Weng Q., Li M., Yu X., Guo Y. et al. 2015 Comparative genomics analyses reveal extensive chromosome colinearity and novel quantitative trait loci in Eucalyptus. PLoS One. 10, e0145144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G. and Quiros C. F. 2001 Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461.

    Article  CAS  Google Scholar 

  • Liu X., Fan Y., Mak M., Babla M., Holford H., Wang F. et al. 2017 QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genomics. 18, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madhibha T., Murepa R., Musokonyi C. and Gapare W. 2013 Genetic parameter estimates for interspecific Eucalyptus hybrids and implications for hybrid breeding strategy. New Forests. 44, 63–84.

    Article  Google Scholar 

  • Midgley S. J. 2013 Making a difference: celebrating success in Asia. Aust. For. 76, 73–75.

    Article  Google Scholar 

  • Semagn K., Bjornstad A. and Xu Y. 2010 The genetic dissection of quantitative traits in crops. Elec. J. Biotech. (http://doi.org/10.2225/vol13-issue5-fulltext-21).

  • Shahinnia F. F., Roy J. J. L., Laborde B. B., Sznajder B. B., Kalambettu P. P., Mahjourimajd S. S. et al. 2016 Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol. 6, 150.

    Article  Google Scholar 

  • Tong Y. G., Ding X. X., Zhang K. C., Yang X. and Huang W. 2016 Effect of the gall wasp Leptocybe invasa on hydraulic architecture in Eucalyptus camaldulensis plants. Front. Plant Sci. 7, 130.

    PubMed  PubMed Central  Google Scholar 

  • Van Ooijen J. W. 2011 Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Gen. Res. 93, 343–349.

    Article  Google Scholar 

  • Voorrips R. 2002 MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Wang H., Shi H., Yang R., Liu J. and Yu Y. 2012 Stomatal characteristics of greening plant species in response to different urban atmospheric environments in Xi’an China. J. Food Agric. Environ. 10, 1524–1529.

    Google Scholar 

  • Wang S., Basten C. J. and Zeng Z. B. 2007 Windows QTL cartographer 2.5. https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm.

  • Xie Y. 2015 Current situation and development of Eucalyptus research in China. In Abstracts IUFRO eucalypt conference on scientific cultivation and green development to enhance the sustainability of eucalypt plantations. Zhanjiang, Guangdong, China (www.iufro.org/download/file/22326/5738/20803-zhanjiang15-abstracts_pdf/).

  • Yu X., Guo Y., Zhang X., Li F., Weng Q., Li M. et al 2012 Integration of EST-CAPS markers into genetic maps of Eucalyptus urophylla and E. tereticornis and their alignment with E. grandis genome sequence. Silvae Genet. 61, 247–255.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Biotechnology, Government of India for providing financial support for the project. Ms. M. Sumathi received senior research fellowship from Department of Biotechnology, Government of India. We thank the anonymous reviewer for the comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yasodha.

Additional information

Communicated by Manoj Prasad

SM conducted marker polymorphism analysis in the laboratory, trait measurements, data analysis and drafted the manuscript. BVKW and DB participated in the seedling raising, field planting and maintenance of the mapping population. MGD participated in designing the experiments and finalized the manuscript. MA, NB, RD and SV participated in designing the experiments, conducted controlled pollination, seedling raising and field planting. YR conceived, organized and planned the research and finalized the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumathi, M., Bachpai, V.K.W., Deeparaj, B. et al. Quantitative trait loci mapping for stomatal traits in interspecific hybrids of Eucalyptus. J Genet 97, 323–329 (2018). https://doi.org/10.1007/s12041-018-0896-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0896-x

Keywords

Navigation