Isolation and characterization of microsatellite markers in the spiny lobster, Panulirus echinatus Smith, 1869 (Decapoda: Palinuridae) by Illumina MiSeq sequencing

  • Michelli F. Santos
  • Isis G. B. Souza
  • Sulimary O. Gomes
  • Geice R. Silva
  • Paul Bentzen
  • Fabio M. Diniz
Online Resources


The isolation and characterization of 17 polymorphic microsatellite loci from the spiny lobster Panulirus echinatus (Decapoda: Palinuridae) by Illumina MiSeq sequencing is described. The analysis of genetic variability was performed in 42 individuals from 3 different populations (Saint Peter and Saint Paul Rocks, The Rocas Atoll and Cape Verde). The number of alleles ranged from 2 to 8, with an average of 5.4 ± 1.4 alleles per locus. The values of allelic richness varied from 1.8 to 6.2 (average of 3.9 ± 1.0), while PIC values ranged between 0.173 and 0.811. Overall mean observed and expected heterozygosity was estimated to be 0.418 ± 0.165 and 0.587 ± 0.173, respectively. These are the first microsatellite markers characterized for P. echinatus and it is expected that these markers will help to obtain the necessary information for developing conservation and management strategies for this highly valuable fishery species.

Lobster fisheries, undoubtedly, is one of the most...


molecular markers MiSeq sequencing brown spiny lobster population genetics 



Sequencing was done on a MiSeq DNA sequencer purchased with a bequest from Elizabeth Ann Nielsen to the Marine Gene Probe Laboratory. The authors acknowledge financial support from the Brazilian Federal Government (Science without Borders programme) scholarship. The authors MFS, IGBS, SOG and GRS were supported by scholarships from the National Council for Scientific and Technological Development (CNPq).


  1. Abdelkrim J., Robertson B. C., Stanton J. A. L. and Gemmell N. J. 2009 Fast, cost effective development of species specific microsatellite markers by genomic sequencing. Biotechniques 46, 185–192.CrossRefPubMedGoogle Scholar
  2. Agardy T. 2000 Effects of fisheries on marine ecosystems: a conservationist’s perspective. ICES J. Mar. Sci. 57, 761–765.CrossRefGoogle Scholar
  3. Altukhov Y. 1981 The stock concept from the view point of population genetics. Can. J. Fish. Aquat. Sci. 38, 1523–1538.CrossRefGoogle Scholar
  4. Barreto A. V., Zani-Teixeira M. L., Ivo C. T. C. and Katsuragawa M. 2009 Biometric relationships of the spotted lobster, Panulirus echinatus, from Tamandaré coastal reefs, Pernambuco State, Brazil. J. Mar. Biol. Assoc. 89, 1601–1606.CrossRefGoogle Scholar
  5. Ben-Horin T., Iacchei M., Selkoe K. A., Mai T. T. and Toonen R. J. 2009 Characterization of eight polymorphic microsatellite loci for the California spiny lobster, Panulirus interruptus and cross-amplification in other achelate lobsters. Conserv. Genet. Resour. 1, 193–197.CrossRefGoogle Scholar
  6. Botstein D., White R. L. and Skolnick M. 1980 Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.PubMedPubMedCentralGoogle Scholar
  7. Dailianis T., Tsigenopoulos C. S., Dounas C. and Voultsiadou E. 2011 Genetic diversity of the imperilled bath sponge Spongia officinalis Linnaeus, 1759 across the Mediterranean Sea: patterns of population differentiation and implications for taxonomy and conservation. Mol. Ecol. 20, 3757–3772.CrossRefPubMedGoogle Scholar
  8. Dakin E. E. and Avise J. C. 2004 Microsatellite null alleles in parentage analysis. Heredity 93, 504–509.CrossRefPubMedGoogle Scholar
  9. Delghandi M., Goddard S., Jerry D. R., Dao H. T., Afzal H. and Al-Jardani S. S. 2015 Isolation, characterization, and multiplexing of novel microsatellite markers for the tropical scalloped spiny lobster (Panulirus homarus). Genet. Mol. Res. 14, 19066–19070.CrossRefPubMedGoogle Scholar
  10. Diniz F. M., Maclean N., Paterson I. G. and Bentzen, P. 2004 Polymorphic tetranucleotide microsatellite markers in the Caribbean spiny lobster, Panulirus argus. Mol. Ecol. Notes 4, 327–329.CrossRefGoogle Scholar
  11. Diniz F. M., Maclean N., Ogawa M., Paterson I. G. and Bentzen P. 2005 Microsatellites in the overexploited spiny lobster, Panulirus argus: Isolation, characterization of loci and potential for intraspecific variability studies. Conserv. Genet. 6, 637–641.CrossRefGoogle Scholar
  12. Du L., Li Y., Zhang X. and Yue B. 2013 MSDB: a user-friendly program for reporting distribution and building databases of microsatellites from genome sequences. J. Hered. 104, 154–157.CrossRefPubMedGoogle Scholar
  13. Goudet J. 1995 FSTAT Version a computer program to calculate F-statistics. J. Hered. 86, 485–486.CrossRefGoogle Scholar
  14. Holthuis L. B. 1991 FAO species catalogue. Vol. 13. Marine lobsters of the world. An annotated and illustrated catalogue of species of interest to fisheries known to date. FAO Fish. Synopsis 125, 1–292.Google Scholar
  15. Johnson M. S. and Black R. 1984 The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar. Biol. 79, 295–302.CrossRefGoogle Scholar
  16. Kalinowski S. T., Taper M. L. and Marshall T. C. 2007 Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106.CrossRefPubMedGoogle Scholar
  17. Kaukinen K. H., Supernault K. J. and Miller K. M. 2004 Enrichment of tetranucleotide microsatellite loci from invertebrate species. J. Shellfish Res. 23, 621–626.Google Scholar
  18. Kennington W. J., Levy E., Berry O., Groth D. M., Waite A. M., Johnson M. S. and Melville-Smith R. 2010 Characterization of 18 polymorphic microsatellite loci for the western rock lobster Panulirus cygnus. Conserv. Genet. Resour. 2, 389–391.CrossRefGoogle Scholar
  19. Konishi K., Suzuki N. and Chow S. 2006 A late-stage phyllosoma larva of the spiny lobster Panulirus echinatus Smith, 1869 (Crustacea: Palinuridae) identified by DNA analysis. J. Plankton Res. 28, 841–845.CrossRefGoogle Scholar
  20. Liu L., Yang X. and Liu C. 2013 Eleven novel polymorphic microsatellite loci in the ornate spiny lobster Panulirus ornatus (Decapoda: Palinuridae). J. Genet. 92, e65–e67.PubMedGoogle Scholar
  21. Pinheiro A. P., Freire F. A. M. and Lins-Oliveira J. E. 2003 Population biology of Panulirus echinatus Smith, 1869 (Decapoda: Palinuridae) from São Pedro e São Paulo archipelago, Northeastern Brazil. Nauplius 11, 27–35.Google Scholar
  22. Pinheiro A. P. and Lins-Oliveira J. E. 2006 Reproductive biology of Panulirus echinatus (Crustacea: Palinuridae) from São Pedro and São Paulo archipelago, Brazil. Nauplius 14, 89–97.Google Scholar
  23. Ptacek M. B., Sarver S. K., Childress M. J., Herrnkind W. F. 2001 Molecular phylogeny of the spiny lobster genus Panulirus (Decapoda: Palinuridae). Mar. Freshw. Res. 52, 1037–1047.CrossRefGoogle Scholar
  24. Raymond M. and Rousset F. 1995 An exact test for population differentiation. Evolution 49, 1280–1283.CrossRefPubMedGoogle Scholar
  25. Rozen S. and Skaletsky H. 2000 Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol . 132, 365–386.PubMedGoogle Scholar
  26. Sambrook J., Fritsch E. F. and Maniatis T. 1989 Molecular cloning: a laboratory manual, pp. 1626. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  27. Scribner K. T., Lowe W. H., Landguth E., Luikart G., Infante D. M., Whelan G. E. and Muhlfeld C. C. 2016 Applications of genetic data to improve management and conservation of river fishes and their habitats. Fisheries 41, 174–188.CrossRefGoogle Scholar
  28. Shaklee J. B. and Samollow P. B. 1984 Genetic variation and population structure in a spiny lobster, Panulirus marginatus, in the Hawaiian Archipelago. Fish. Bull. 82, 693–702.Google Scholar
  29. Tringali M. D., Seyoum S. and Schmitt S. L. 2008 Ten di- and trinucleotide microsatellite loci in the Caribbean spiny lobster, Panulirus argus, for studies of regional population connectivity. Mol. Ecol. Resour. 8, 650–652.CrossRefPubMedGoogle Scholar
  30. Truelove N. K., Behringer D. C., Butler IV M. J. and Preziosi R. F. 2015 Genetic analysis reveals temporal population structure in Caribbean spiny lobster (Panulirus argus) within marine protected areas in Mexico. Fish. Res . 172, 44–49.CrossRefGoogle Scholar
  31. van Oosterhout C., Hutchinson W. F., Wills D. P. M. and Shipley P. 2004 Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538.CrossRefGoogle Scholar
  32. Wright J. M. and Bentzen P. 1994 Microsatellites – genetic markers for the future. Rev. Fish Biol. Fisher. 4, 384–388.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Michelli F. Santos
    • 1
    • 2
  • Isis G. B. Souza
    • 1
    • 2
  • Sulimary O. Gomes
    • 1
    • 2
  • Geice R. Silva
    • 1
    • 2
  • Paul Bentzen
    • 3
  • Fabio M. Diniz
    • 4
    • 5
  1. 1.Universidade Federal do PiauíTeresinaBrazil
  2. 2.Universidade Federal do Piauí, Northeast Biotechnology Network RENORBIOTeresinaBrazil
  3. 3.Department of BiologyDalhousie UniversityHalifaxCanada
  4. 4.Empresa Brasileira de Pesquisa Agropecuária, Embrapa Meio-NorteTeresinaBrazil
  5. 5.Empresa Brasileira de Pesquisa Agropecuária, Embrapa Caprinos e OvinosSobralBrazil

Personalised recommendations