Skip to main content

Advertisement

Log in

Isolation and characterization of the major histocompatibility complex DQA1 and DQA2 genes in gayal (Bos frontalis)

  • Research article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The species origin of Yunnan gayal has been controversial since many years. However, few recent genetic studies have suggested that it has perhaps originated from the hybridization between male Bos frontalis and female B. taurus or B. indicus. Being an important semi-wild bovid species, this has also been listed under the red list of International Union of Conservation of Nature and Natural Resources. However, there is limited information available about the immunogenicity of this precarious species of Bos. Major histocompatibility complex (MHC) plays a pivotal role in immune response to infectious diseases in vertebrates. In the present study, we have investigated the structural and functional characteristics and possible duplication of the MHC-DQA genes in gayal (B. frontalis). Two full-length cDNA clones of the MHC-DQA genes were amplified and designated as Bofr-DQA1 (DQA*0101) and Bofr-DQA2 (DQA*2001) with GenBank accession numbers KT318732 and KT318733, respectively. A comparison between Bofr-DQA1, Bofr-DQA2 and to other MHC-DQA molecules from different animal species showed that nucleotide and encoded amino acid sequences of these two identified MHC-DQA genes have more similarity to alleles of specific DQA1 and DQA2 molecules from other Ruminantia species than to each other. The phylogenic investigation also demonstrated a large genetic distance between these two genes than to homologous from the other species. The large genetic distance between Bofr-DQA1 and Bofr-DQA2, and the presence of different bovine DQA putative motifs clarify that these sequences are nonallelic type. These results could suggest that duplication of the DQA genes has also occurred in gayal. The findings of the present study have strengthened our understanding to MHC diversity in rare ruminants and mutation of immunological functions, selective and evolutionary forces that affect MHC variation within and between species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson L. and Rask L. 1988 Characterization of the MHC class II region in cattle: the number of DQ genes varies between haplotypes. Immunogenetics  27, 110–120.

    Article  CAS  PubMed  Google Scholar 

  • Ballingall K. T., Marasa B. S., Luyai A. and Mckeever G. J. 1998 Identification of diverse BoLA DQA3 genes consistent with non-allelic sequences. Anim. Genet. 29, 123–129.

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L. and Landry C. 2003 MHC studies in non model vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol.  16, 363–377.

    Article  CAS  PubMed  Google Scholar 

  • Brown J. H., Jardetzky T. S., Gorge J. C., Stern L. J., Urban R. G., Strominger J. L. et al. 1993 Three dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature  364, 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Chi J., Fu B., Nie W., Wang J., Graphodatsky A. S. and Yang F. 2005 New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest muskdeer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet. Genome Res.  108, 310–316.

    Article  CAS  PubMed  Google Scholar 

  • Germain R. N. 1995 The biochemistry and cell biology of antigen presentation by MHC class I and class II molecules. Implications for development of combination vaccines. Ann. N. Y. Acad. Sci.  754, 114–125.

    Article  CAS  PubMed  Google Scholar 

  • Glass E. J., Oliver R. A. and Russell G. C. 2009 Duplicated DQ haplotypes increases the complexity of restriction element usage in cattle. J. Immunol. 165, 134–138.

    Article  Google Scholar 

  • Gou X., Wang Y. Q., Yang S. L., Deng W. D. and Mao H. M. 2010 Genetic diversity and origin of gayal and cattle in Yunnan revealed by mtDNA D-loop and SRY gene sequence variation. J. Anim. Breed. Genet.  127, 154–160.

    Article  CAS  PubMed  Google Scholar 

  • He Y., Xi D., Leng J., Qian T., Jin D., Chen T. et al. 2014 Genetic variability of MHC class II DQB exon 2 alleles in yak (Bos grunniens). Mol. Biol. Rep. 41, 2199–2206.

    Article  CAS  PubMed  Google Scholar 

  • Kappes D. and Strominger J. L. 1988 Human class II major histocompatibility complex genes and proteins. Annu. Rev. Biochem.  57, 991–1028.

    Article  CAS  PubMed  Google Scholar 

  • Klein J. 1986 Seeds of time: fifty years ago Peter A. Gorer discovered the H-2 complex. Immunogenetics 24, 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Kuduk K., Babik W., Bojarska K., Sliwinska E. B., Kingberg J., Taberlet P. et al. 2012 Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evol. Biol.  12, 197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan H., Xiong X., Lin S., Liu A. and Shi L. 1993 Mitochondrial DNA polymorphism of cattle (*Bos taurus*) and mithun (*Bos **frontalis*) in Yunnan Province. Acta Gen. Sin. 20, 419–425.

  • Lazzaro B. P. and Little T. J. 2009 Immunity in a variable world. Philos. Trans. R. Soc. London, Ser. B 364, 15–26.

    Google Scholar 

  • McKinney D. M., Southwood S., Hinz D., Osseroff C., Arlehamn C. S., Schulten V. et al. 2013 Strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population. Immunogenetics 65, 357–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie L., Shi L., He X. D., Zhao Y. L., Mu W. G. and Zhang J. L. 1995 The gayal’s genetic diversity and its genetic structure’s enzyme analysis. Acta. Genet. Sin.  22, 185–191.

    CAS  Google Scholar 

  • Niranjan S. K., Deb S. M., Sharma A. and Kumar S. 2009 Isolation of two cDNAs encoding MHC-DQA1 and -DQA2 from the water buffalo, Bubalus bubalis. Vet. Immunol. Immunopathol. 130, 268–271.

    Article  CAS  PubMed  Google Scholar 

  • Perera B. M. 2011 Reproductive cycles of buffalo. Anim. Reprod. Sci.  124, 194–199.

    Article  CAS  PubMed  Google Scholar 

  • Rajkhowa S., Rajkhowa C., Rahman H. and Bujarbaruah K. M. 2004 Seroprevalence of infectious bovine rhinotracheitis in mithun (Bos frontalis) in India. Rev. Sci. Tech. 23, 821–829.

    Article  CAS  PubMed  Google Scholar 

  • Reed D. H. and Frankham R. 2003 Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237.

    Article  Google Scholar 

  • Rudd P. M., Wormald M. R., Stanfield R. L., Huang M., Mattsson N., Speir J. A. et al. 1999 Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol. 293, 351–366.

    Article  CAS  PubMed  Google Scholar 

  • Russell B. C., Gallagher A., Craigmile S. and Glass E. J. 1997 Characterization of cattle cDNA sequences from two DQA loci. Immunogenetics  45, 455–458.

    Article  CAS  PubMed  Google Scholar 

  • Sena L., Schneider M. P., Brenig B. B., Honeycutt R. L., Honeycutt D. A., Womack J. E. et al. 2011 Polymorphism and gene organization of water buffalo MHC-DQBgenes show homology to the BoLA DQB region. Anim. Genet. 42, 378–385.

  • Sigurdardottir S., Borsch C., Gustafsson K. and Andersson L. 1992 Gene duplications and sequence polymorphism of bovine class II DQB genes. Immunogenetics  35, 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Simoons F. J. 1984 Gayal or mithan. In Evolution of domesticated animals (ed. I. L. Mason), pp. 34–38. Longman, London.

    Google Scholar 

  • Sun Y., Xi D., Li G., Hao T., Chen Y. and Yang Y. 2014 Genetic characterization of MHC class II DQB exon 2 variants in gayal (Bos frontalis). Biotechnol. Biotec. Eq.  28, 827–833.

    Article  Google Scholar 

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007 MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol.  24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tibayrenc M. 2004 A molecular biology approach to tuberculosis. Proc. Natl. Acad. Sci. USA  101, 4721–4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trowsdale J. 2001 Genetic and functional relationships between MHC and NK receptor genes. Immunity  15, 363–374.

    Article  CAS  PubMed  Google Scholar 

  • Trowsdale J. and Parham P. 2004 Defense strategies and immunity-related genes. Eur. J. Immunol.  34, 7–17.

    Article  CAS  PubMed  Google Scholar 

  • Verkaar E. L. C., Nijman I. J., Beeke M., Hanekamp E. and Lenstra J. A. 2004 Maternal and paternal lineages in cross-breeding bovine species. Has Wisent a hybrid origin? Mol. Biol. Evol. 21, 1165–1170.

    Article  CAS  PubMed  Google Scholar 

  • Walker E., Warnick F. and Hamlet S. 1968 Mammals of the world. The Johns Hopkins Press, Balttmore.

  • Williams A., Peh C. A. and Elliott T. 2002 The cell biology of MHC class I antigen presentation. Tissue Antigens 59, 3–17.

  • Xi D. M., Wanapat M., Deng W. D., He T. B., Yang Z. F. and Mao H. M. 2007 Comparison of gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): in vitro dry matter digestibility and gas production for a range of forages. Asian-Aust. J. Anim. Sci. 20, 1208–1214.

    Article  CAS  Google Scholar 

  • Yang Z. 2007 PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Zhao K. D., Ou C. H., Huang Y. L. and He T. B. 2003 Rare animal germplasm resources in Yunnan Province: present situation and counter measures of preservation and research on Dulong cattle (Bos frontalis). J. Yellow Cattle Sci.  29, 71–74 (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support and cooperation received from the Dean, Faculty of Animal Science and Technology, Yunnan Agricultural University, China. We also thank the villagers and locals who helped us in sampling the gayal and the colleagues for synchronizing their work and help in wet lab experiments. Funding was provided by the National Nature Science Foundation of China under project nos. 31460583 and 31101640. Partial funding was also provided by the Yunnan Provincial Key Laboratory of Animal Nutrition and Feed with grant no. DYCX2015004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Xi.

Additional information

Corresponding editor: Indrajith Nanda

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memon, S., Wang, L., Li, G. et al. Isolation and characterization of the major histocompatibility complex DQA1 and DQA2 genes in gayal (Bos frontalis). J Genet 97, 121–126 (2018). https://doi.org/10.1007/s12041-018-0882-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0882-3

Keywords

Navigation