Skip to main content

Advertisement

Log in

Detecting cognizable trends of gene expression in a time series RNA-sequencing experiment: a bootstrap approach

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Study of temporal trajectory of gene expression is important. RNA sequencing is popular in genome-scale studies of transcription. Because of high expenses involved, many time-course RNA sequencing studies are challenged by inadequacy of sample sizes. This poses difficulties in conducting formal statistical tests of significance of null hypotheses. We propose a bootstrap algorithm to identify ‘cognizable’ ‘time-trends’ of gene expression. Properties of the proposed algorithm are derived using a simulation study. The proposed algorithm captured known ‘time-trends’ in the simulated data with a high probability of success, even when sample sizes were small (n<10). The proposed statistical method is efficient and robust to capture ‘cognizable’ ‘time-trends’ in RNA sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aijo T., Butty V., Chen Z., Salo V., Tripathi S., Burge C. et al. 2014 Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation. Bioinformatics 30, i113–i120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar-Joseph Z., Gitter A. and Simon I. 2012 Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 13, 552–564.

    Article  CAS  PubMed  Google Scholar 

  • Brooks M. J., Rajasimha H. K., Roger J. E. and Swaroop A. 2011 Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes. Mol. Vis. 17, 3034–3054.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown A. and Hudson K. 2015 Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons. BMC Plant Biol. 15, 169–182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Capobianco E. 2014 RNA-Seq data: a complexity journey. Comput. Struct. Biotechnol. J. 11, 123–130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar R. 2002 Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efron B. 1979 Bootstrap methods: another look at the Jackknife. Ann. Statist. 7, 1–26.

    Article  Google Scholar 

  • Ganesh S., Joo J., Skelding K., Mehta L., Zheng G., O’Neill K. et al. 2011 Time course analysis of gene expression identifies multiple genes with differential expression in patients with in-stent restenosis. BMC Med. Genomics 4, 20–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • González V. L., Andrade S. C., Bieler R., Collins T. M., Dunn C. W., Mikkelsen P. M. et al. 2015 A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proc. Biol. Sci. 282, 20142332–20142340.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu X., Zou Y., Huang W., Shen L., Arendsee Z. and Su Z. 2013 Phylogenomic distance method for analyzing transcriptome evolution based on RNA-seq data. Genome Biol. Evol. 5, 1746–1753.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoyle R. 1999 Statistical strategies for small sample research. SAGE Publications, California, USA.

    Google Scholar 

  • Klepikova A., Logacheva M., Dmitriev S. and Penin A. 2015 RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. BMC Genomics 16, 466–480.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasikov V., Aguirre von Wobeser E., Dekker H., Huisman J. and Matthijs H. 2012 Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803. Physiol. Plant. 145, 426–439.

    Article  CAS  PubMed  Google Scholar 

  • Lissner M. and Smale S. 2014 Comparative analysis of transcriptional responses in monocytes from human neonates, adults, and older adults. [GSE60216].

  • Lissner M., Thomas B., Wee K., Tong A., Kollmann T. and Smale S. 2015 Age-related gene expression differences in monocytes from human neonates, young adults, and older adults. PLoS One 10, e0132061.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantione K. J., Kream R. M., Kuzelova H., Ptacek R., Raboch J., Samuel J. M. et al. 2014 Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq. Med. Sci. Monit. Basic Res. 20, 138–142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A., Williams B. A., McCue K., Schaeffer L. and Wold B. 2008 Mapping and quantifying mammalian transcriptomes by rna-seq. Nat. Methods 5, 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Neymotin B., Athanasiadou R. and Gresham D. 2014 Determination of in vivo RNA kinetics using RATE-seq. RNA 20, 1645–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saliba A., Westermann A., Gorski S. and Vogel J. 2014 Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz F. 2007 The bootstrap small sample properties. Boeing Computer Services, Research and Technology. Tech. Rep. 1–92.

  • Schöpke B. and Zeng A. 2012 Inference of responsive metabolic pathways from time-series transcriptomic data with consideration of the metabolic network structure. Integr. Biol. 4, 889–896.

    Article  Google Scholar 

  • Siegal-Gaskins D., Ash J. and Crosson S. 2009 Model-based deconvolution of cell cycle time-series data reveals gene expression details at high resolution. PLoS Comput. Biol. 5, e1000460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Staff S. 2011 Using the SRA Toolkit to convert .sra files into other formats. National Center for Biotechnology Information (US). Available at: http://www.ncbi.nlm.nih.gov/books/NBK158900/ [accessed 22 Aug. 2015].

  • Starmans M., Chu K., Haider S., Nguyen F., Seigneuric R., Magagnin M. et al. 2012 The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer. Radiother. Oncol. 102, 436–443.

    Article  CAS  PubMed  Google Scholar 

  • Stewart R., Rascon C., Tian S., Nie J., Barry C., Chu L. et al. 2013 Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput. Biol. 9, e1002936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C., Williams B., Pertea G., Mortazavi A., Kwan G., van Baren M. et al. 2010 Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D. et al. 2012 Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Wiel M., de Menezes R., Siebring-van Olst E. and van Beusechem V. 2013 Analysis of small-sample clinical genomics studies using multi-parameter shrinkage: application to high-throughput RNA interference screening. BMC Med. Genomics 6, S1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z., Gerstein M. and Snyder M. 2009 RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J., Berntenis N., Roth A. and Ebeling M. 2013 Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. Pharmacogenomics J. 14, 208–216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S., Fung-Leung W., Bittner A., Ngo K. and Liu X. 2014 Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9, e78644.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Rishav Ray, National Institute of Biomedical Genomics, Kalyani, India, for his contribution in generating simulated dataset and generating bootstrap results for five time-point dataset. Shatakshee Chatterjee is supported by Indian Council of Medical Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PRIYANKA PANDEY.

Additional information

[Chatterjee S., Majumder P. P. and Pandey P. 2016 Detecting cognizable trends of gene expression in a time series RNA-sequencing experiment: a bootstrap approach. J. Genet. 95, xx–xx]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 159 KB)

(PDF 15.0 MB)

(XLS 1.58 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHATTERJEE, S., MAJUMDER, P.P. & PANDEY, P. Detecting cognizable trends of gene expression in a time series RNA-sequencing experiment: a bootstrap approach. J Genet 95, 587–593 (2016). https://doi.org/10.1007/s12041-016-0681-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0681-7

Keywords

Navigation