Skip to main content
Log in

Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However, relatively little is known about the LBD genes in grape (Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1–chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expression patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene family in grape and provides valuable information for classification and functional investigation of this gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altschul S. F., Gish W., Miller W., Myers E. W. and Lipman D. J. 1990 Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Artimo P., Jonnalagedda M., Arnold K., Baratin D., Csardi G, de Castro E. et al. 2012 ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, W597–W603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortiri E., Chuck G., Vollbrecht E., Rocheford T., Martienssen R. and Hake S. 2006 ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18, 574–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera J., Díaz-Manzano F. E., Sanchez M., Rosso M. N., Melillo T., Goh T. et al. 2014 A role for LATERAL ORGAN BOUNDARIES-DOMAIN 16 during the interaction of ArabidopsisMeloidogyne spp. provides a molecular link between lateral root and root-knot nematode feeding site development. New Phytol. 203, 632–645.

    Article  CAS  PubMed  Google Scholar 

  • Cannon S. B., Mitra A., Baumgarten A., Young N. D. and May G. 2004 Te roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 4, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao J., Han X., Zhang T. C., Yang Y. P., Huang J. L. and Hu X. Y. 2014 Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera. BMC Genomics 15, 1116–1134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalfun-Junior A., Franken J., Mes J. J., Marsch-Martinez N., Pereira A. and Angenent G. C. 2005 ASYMMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals. Plant Mol. Biol. 57, 559–575.

    Article  CAS  PubMed  Google Scholar 

  • Cheng C. X., Xu X. Z., Gao M., Li J., Guo C. L., Song J. Y. et al. 2013 Genome-wide analysis of respiratory burst oxidase homologs in grape (Vitis vinifera L.). Int. J. Mol. Sci. 14, 24169–24186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G. et al. 2003 Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks G. E., Hon G., Chandonia J. M. and Brenner S. E. 2004 WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Riquelme J., Lijavetzky D., Martínez-Zapater J. M. and Carmona M. J. 2009 Genome-wide analysis of MIKC Ctype MADS box genes in grapevine. Plant Physiol. 149, 354–369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar R. C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan M., Xu C., Xu K. and Hu Y. 2012 LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 22, 1169– 1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasoli M., Dal Santo S., Zenoni S., Tornielli G. B., Farina L., Zamboni A. et al. 2012 The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24, 3489–3505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z., Zhu J., Du X. and Cui X. 2012 Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. Planta 236, 1227–1237.

    Article  CAS  PubMed  Google Scholar 

  • Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R. et al. 2014 Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230.

    Article  CAS  PubMed  Google Scholar 

  • Gapper N. E., McQuinn R. P. and Giovannoni J. J. 2013 Molecular and genetic regulation of fruit ripening. Plant Mol. Biol. 82, 575–591.

    Article  CAS  PubMed  Google Scholar 

  • Goodstein D. M., Shu S., Howson R., Neupane R., Hayes R. D., Fazo J. et al. 2012 Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186.

    Article  CAS  PubMed  Google Scholar 

  • Gouthu S., O’Neil S. T., Di Y. M., Ansarolia M., Megraw M. and Deluc L. G. 2014 A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries. J. Exp. Bot. 65, 5889–5902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo A. Y., Zhu Q. H., Chen X. and Luo J. C. 2007 GSDS: a gene structure display server. Yi Chuan 29, 1023–1026.

    Article  CAS  PubMed  Google Scholar 

  • Husbands A., Bell E. M., Shuai B., Smith H. M. and Springer P. S. 2007 LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res. 35, 6663–6671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inukai Y., Sakamoto T., Ueguchi-Tanaka M., Shibata Y., Gomi K., Umemura I. et al. 2005 Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17, 1387–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwakawa H., Ueno Y., Semiarti E., Onouchi H., Kojima S., Tsukaya H. et al. 2002 The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol. 43, 467–478.

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O., Aury J. M., Noel B., Policriti A., Clepet C., Casagrande A. et al. 2007 French–Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, U463–U467.

    Article  Google Scholar 

  • Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G. and Gibson T. J. 1998 Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405.

    Article  CAS  PubMed  Google Scholar 

  • Kim J. and Lee H. W. 2013 Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis. Plant Signal. Behav. 8, e22979.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M. J. and Kim J. 2012 Identification of nuclear localization signal in ASYMMETRIC LEAVES2-LIKE18/LATERAL ORGAN BOUNDARIES DOMAIN16 (ASL18/LBD16) from Arabidopsis. J. Plant Physiol. 169, 1221–1226.

    Article  CAS  PubMed  Google Scholar 

  • Lamesch P., Berardini T. Z., Li D., Swarbreck D., Wilks C., Sasidharan R. et al. 2012 The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210.

    Article  CAS  PubMed  Google Scholar 

  • Lee H. W., Kim M. J., Kim N. Y., Lee S. H. and Kim J. 2013 LBD18 acts as a transcriptional activator that directly binds to the EXPANSIN14 promoter in promoting lateral root emergence of Arabidopsis. Plant J. 73, 212–224.

    Article  CAS  PubMed  Google Scholar 

  • Lee H. W., Park J. H., Park M. Y. and Kim J. 2014 GIP1 may act as a coactivator that enhances transcriptional activity of LBD18 in Arabidopsis. J. Plant Physiol. 171, 14–18.

    Article  CAS  PubMed  Google Scholar 

  • Letunic I., Doerks T. and Bork P. 2012 SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40, D302–D305.

    Article  CAS  PubMed  Google Scholar 

  • Liu H. J., Wang S. F., Yu X. B., Yu J., He X. W., Zhang S. L. et al. 2005 ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J. 43, 47–56.

    Article  PubMed  Google Scholar 

  • Liu R. H. and Meng J. L. 2003 MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan 25, 317–321.

    PubMed  Google Scholar 

  • Majer C. and Hochholdinger F. 2011 Defining the boundaries: structure and function of LOB domain proteins. Trends Plant Sci. 16, 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Majer C., Xu C., Berendzen K. W. and Hochholdinger F. 2012 Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot-borne root initiation in maize (Zea mays L.). Phil. Trans. R. Soc. B 367, 1542–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangeon A., Bell E. M., Lin W. C., Jablonska B. and Springer P. S. 2011 Misregulation of the LOB domain gene DDA1 suggests possible functions in auxin signalling and photomorphogenesis. J. Exp. Bot. 62, 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Mount D. W. 2007 Using the basic local alignment search tool (BLAST). CSH Protoc pdb.top17 (doi:10.1101/pdb.top17).

  • Naito T., Yamashino T., Kiba T., Koizumi N., Kojima M., Sakakibara H. et al. 2007 A link between cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) that belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) family genes in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 71, 1269– 1278.

    Article  CAS  PubMed  Google Scholar 

  • Okushima Y., Fukaki H., Onoda M., Theologis A. and Tasaka M. 2007 ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19, 118–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okushima Y., Overvoorde P. J., Arima K., Alonso J. M., Chan A., Chang C. et al. 2005 Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17, 444–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelps-Durr T. L., Thomas J., Vahab P. and Timmermans M. C. 2005 Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell 17, 2886–2898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin G., Tohge T., Matsuda F., Saito K. and Scheible W. R. 2009 Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21, 3567–3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuai B., Reynaga-Peña C. G. and Springer P. S. 2002 The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol. 129, 747–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S. B., Meng L. S., Sun X. D. and Feng Z. H. 2010 Using high competent shoot apical meristems of cockscomb as explants for studying function of ASYMMETRIC LEAVES2-LIKE11 (ASL11) gene of Arabidopsis. Mol. Biol. Rep. 37, 973–982.

    Article  Google Scholar 

  • Sun X. D., Feng Z. H., Meng L. S., Zhu J. and Geitmann A. 2013 Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. Planta 237, 1367–1378.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thatcher L. F., Powell J. J., Aitken E. A., Kazan K. and Manners J. M. 2012 The lateral organ boundaries domain transcription factor LBD20 functions in Fusarium wilt susceptibility and jasmonate signaling in Arabidopsis. Plant Physiol. 160, 407–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodoris G., Inada N. and Freeling M. 2003 Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proc. Natl. Acad. Sci. USA 100, 6837–6842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. 1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollbrecht E., Springer P. S., Goh L., Buckler 4th E. S. and Martienssen R. 2005 Architecture of floral branch systems in maize and related grasses. Nature 436, 1119–1126.

  • Wan S. B., Li W. L., Zhu Y. Y., Liu Z. M., Huang W. D. and Zhan J. C. 2014 Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant Cell Rep. 33, 1365–1375.

    Article  CAS  PubMed  Google Scholar 

  • Wang G., Lovato A., Polverari A. and Ma L. Y. H. 2014a Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). BMC Plant Biol. 14, 219–237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L. N., Zhu W., Fang L. C., Sun X. M., Su L. Y., Liang Z. C. et al. 2014b Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol. 14, 103–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X. F., Zhang S. Z., Su L., Liu X. and Hao Y. J. 2013a A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES Domain) gene family in Malus domestica with a functional characterization of MdLBD11. PLoS One 8, e57044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X. F., Liu X., Su L., Sun Y. J., Zhang S. Z., Hao Y. J. et al. 2013b Identification, evolution and expression analysis of the LBD gene family in tomato. Sci. Agric. Sin. 46, 2501–2513.

    CAS  Google Scholar 

  • Wu X., Song C., Wang B. and Cheng J. 2002 Hidden Markov model used in protein sequence analysis. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 19, 455–458.

    CAS  PubMed  Google Scholar 

  • Yang Y., Yu X. B. and Wu P. 2006 Comparison and evolution analysis of two rice subspecies LATERAL ORGAN BOUNDARIES domain gene family and their evolutionary characterization from Arabidopsis. Mol. Phylogenet. Evol. 39, 248–262.

    Article  CAS  PubMed  Google Scholar 

  • Yordanov Y. S., Regan S and Busov V. 2010 Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. Plant Cell 22, 3662–3677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentella R., Zhang Z. L., Park M., Thomas S. G., Endo A., Murase K. et al. 2007 Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19, 3037–3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y. M., Zhang S. Z. and Zheng C. C. 2014 Genomewide analysis of LATERAL ORGAN BOUNDARIES Domain gene family in Zea mays. J. Genet. 93, 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q. H., Guo A. Y., Gao G., Zhong Y. F., Xu M., Huang M. et al. 2007 DPTF: a database of poplar transcription factors. Bioinformatics 23, 1307–1308.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (grant no. 31400225), Shandong Province Natural Science Foundation (grant no. ZR2011CM032), and the Shandong Province Young and Middle-aged Scientists Research Awards Fund (grant no. BS2014SW014) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YUE-LING ZHAO or RUI-RUI XU.

Additional information

[Cao H., Liu C.-Y., Liu C.-X., Zhao Y.-L. and Xu R.-R. 2016 Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera. J. Genet. 95, xx–xx]

RX led and coordinated the project and carried out the bioinformatics analyses, CL conducted the RNA extraction and qRT-PCR experiments, RX and YZ wrote the manuscript, HC revised the manuscript. All authors read and agreed with the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 406 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CAO, H., LIU, CY., LIU, CX. et al. Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera . J Genet 95, 515–526 (2016). https://doi.org/10.1007/s12041-016-0660-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0660-z

Keywords

Navigation