Journal of Genetics

, Volume 95, Issue 2, pp 349–355

Comparative cytogenetic analysis of four species of Dendropsophus (Hylinae) from the Brazilian Atlantic forest

  • IGOR SOARES DE OLIVEIRA
  • RAFAEL BUENO NOLETO
  • ADRIELE KARLOKOSKI CUNHA DE OLIVEIRA
  • LUÍS FELIPE TOLEDO
  • MARTA MARGARETE CESTARI
RESEARCH ARTICLE
  • 88 Downloads

Abstract

We conducted a cytogenetic study of four hyline frog species (Dendropsophus elegans, D. microps, D. minutus and D. werneri) from southern Brazil. All species had 2n = 30 chromosomes, with interspecific and intraspecific variation in the numbers of metacentric, submetacentric, subtelocentric and telocentric chromosomes. C-banding and fluorochrome staining revealed conservative GC-rich heterochromatin localized in the pericentromeric regions of all species. The location of the nucleolus organizer regions, as confirmed by fluorescent in situ hybridization, differed between species. Telomeric probes detected sites that were restricted to the terminal regions of all chromosomes and no interstitial or centromeric signals were observed. Our study corroborates the generic synapomorphy of 2n = 30 chromosomes for Dendropsophus and adds data that may become useful for future taxonomic revisions and a broader understanding of chromosomal evolution among hylids.

Keywords

Anura C-banding nucleolus organizer regions telomeres Dendropsophus

Supplementary material

12041_2016_645_MOESM1_ESM.pdf (533 kb)
(PDF 532 KB)

References

  1. Amaro-Ghilardi R. C., Silva M. J. J., Rodrigues M. T. and Yonenaga-Yassuda Y. 2008 Chromosomal studies in four species of genus Chaunus (Bufonidae, Anura): localization of telomeric and ribosomal sequences after fluorescence in situ hybridization (FISH). Genetica 134, 159–168.CrossRefPubMedGoogle Scholar
  2. Badissera Jr F. A., Oliveira P. S. L. and Kasahara S. 1993 Cytogenetics of four Brazilian Hyla species (Amphibia, Anura) and description of a case of supernumerary chromosome. Rev. Brasil Gen. 16, 335–345.Google Scholar
  3. Bogart J. 1973 Evolution of anuran karyotypes. In: Evolutionary biology of Anurans (ed. J. Vial). University of Missouri Press, Columbia.Google Scholar
  4. Campos J. R. C., Ananaias F., Brasileiro C., Yamamoto M., Haddad C. F. B. and Kasahara S. 2009 Chromosome evolution in three Brazilian Leptodactylus species (Anura, Leptodactylidae), with phylogenetic considerations. Hereditas 146, 104–111.CrossRefGoogle Scholar
  5. Catroli G. F. and Kasahara S. 2009 Cytogenetic data on species of the family Hylidae (Amphibia, Anura): results and perspectives. Publ. UEPG CiBiol. Saúde 15, 67–86.CrossRefGoogle Scholar
  6. Carvalho K. A., Garcia P. C. and Recco-Pimentel S. M. 2009 NOR dispersion, telomeric sequence detection in centromeric regions and meiotic multivalent configurations in species of the Aplastodiscus albofrenatus group (Anura, Hylidae). Cytogenet. Genome Res. 126, 359–367.CrossRefPubMedGoogle Scholar
  7. Datson P. M. and Murray B. G. 2006 Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res. 14, 845–857.CrossRefPubMedGoogle Scholar
  8. Faivovich J., Haddad C. F. B., Garcia P. C. A., Frost D. R., Campbell, J. A. and Wheeler W. D. 2005 A systematics review of the frog family Hylidae, with special reference to the Hylinae, a phylogenetic analysis and taxonomic revision. Bull. Am. Mus. Nat. Hist. 294, 1–240.CrossRefGoogle Scholar
  9. Fouquet A., Noona B. P., Blanc M. and Orrico V. G. D. 2011 New distributional records and phylogenetic position for Dendropsophus gaucheri. Zootaxa 3035, 59–67.Google Scholar
  10. Frost D. R. 2014 Amphibian species of the world: an online reference, version 6.0 (accessed on 13th March 2014). Electronic database accessible at http://research.amnh.org/herpetology/amphibia/index.html.
  11. Green D. M. and Sessions S. K. 1991 Nomenclature for chromosomes. In Amphibian cytogenetics and evolution (ed. D. M. Green and S. K. Sessions). Academic Press, San Diego.Google Scholar
  12. Gruber S. L., Haddad C. F. B. and Kasahara S. 2005 Evaluating the karyotypic diversity in species of Hyla (Anura; Hylidae) with 2n = 30 chromosomes based on the analysis of ten species. Folia Biol. 51, 68–75.Google Scholar
  13. Hatanaka T. and Galetti P. M. 2004 Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 122, 239–244.CrossRefPubMedGoogle Scholar
  14. Howell W. M. and Black D. A. 1980 Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer. Experientia 36, 1014–1015.CrossRefPubMedGoogle Scholar
  15. Ijdo J. W., Wells R. A., Baldini A. and Reeders S. T. 1991 Improved telomere detection using a telomere repeat probe (TTAGGG) generated by PCR. Nucleic Acids Res. 19, 4780.CrossRefPubMedPubMedCentralGoogle Scholar
  16. IUCN 2013 The IUCN red list of threatened species, version 2013.2 (accessed on 2nd February 2013). Electronic database accessible at http://www.iucnredlist.org.
  17. Kaiser H., Mais C., Bolaños F., Steinlein C., Feichtinger W. and Schmid M. 1996 Chromosomal investigation of three Costa Rican frogs from the 30-chromosome radiation of Hyla with the description of a unique geographic variation in nucleolus organizer regions. Genetica 98, 95–102.CrossRefGoogle Scholar
  18. Kellogg R. 1932 Mexican tailless amphibians in the United States National Museum. Bull. U. S. Natl. Mus. 160, 1–224.Google Scholar
  19. King M., Contreras N. and Honeycutt R. L. 1990 Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18S + 28S in-situ hybridization. Genetica 80, 17–29.CrossRefPubMedGoogle Scholar
  20. Medeiros L. R., Rossa-Feres D. C. and Recco-Pimentel S. M. 2003 Chromosomal differentiation of Hyla nana and Hyla sanborni (Anura, Hylidae) with a description of NOR polymorphism in H. nana. J. Hered. 94, 149–154.CrossRefPubMedGoogle Scholar
  21. Medeiros L. R., Rossa-Feres D. C., Jim J. and Recco-Pimentel S. M. 2006 B-chromosomes in two Brazilian populations of Dendropsophus nanus (Anura, Hylidae). Genet. Mol. Biol. 29, 257–262.CrossRefGoogle Scholar
  22. Medeiros L. R., Lourenço L. B., Rossa-Feres D. C., Lima A. P., Andrade G. V., Giaretta A. et al. 2013 Comparative cytogenetic analysis of some species of the Dendropsophus microcephalus group (Anura, Hylidae) in the light of phylogenetic inferences. BMC Genet. 14, 59–76.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Noleto R. B., Amaro R. C., Verdade V. K., Campos J. R. C., Gallego L. F. K., Lima A. M. X. et al. 2011 Comparative cytogenetics of eight species of Cycloramphus (Anura, Cycloramphidae). Zool. Anz. 250, 205–214.CrossRefGoogle Scholar
  24. Pyron R. A. and Wiens J. J. 2011 A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583.CrossRefPubMedGoogle Scholar
  25. Rocchi M., Archidiacono N., Schempp W., Capozzi O. and Stanyon R. 2012 Centromere repositioning in mammals. Heredity 108, 59–67.CrossRefPubMedGoogle Scholar
  26. Schmid M., Steinlein C., Bogart J. P., Feichtinger W., León P., La Marca E. et al. 2010 The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet. Genome Res. 130–131, 1–568.CrossRefPubMedGoogle Scholar
  27. Schweizer D. 1981 Counterstain-enhanced chromosome banding. Hum. Genet. 57, 1–14.PubMedGoogle Scholar
  28. Skuk G. and Langone J. A. 1992 Los cromosomas de cuatroespeciesdel género Hyla (Anura: Hylidae) com número diploide de 2n = 30. Acta Zool. Lilloana 41, 165–171.Google Scholar
  29. Suárez P., Cardozo D., Baldo D., Pereyra M. O., Faivovich J., Orrico V. G. D. et al. 2013 Chromosome evolution in Dendropsophini (Amphibia, Anura, Hylidae). Cytogenet. Genome Res. 141, 295–308.CrossRefPubMedGoogle Scholar
  30. Sumner A. 1972 A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306.CrossRefPubMedGoogle Scholar
  31. Tsipouri V., Schueler M. G., Hu S., NISC Comparative Sequencing Program, Dutra A., Pak E. et al. 2008 Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the Indian muntjac genome. Genome Biol. 9, R155.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wiens J. J., Kuczynski C. A., Hua X. and Moen D. S. 2010 An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Mol. Phylogenet. Evol. 55, 871–882.CrossRefPubMedGoogle Scholar
  33. Woznicki P., Sanchez L., Martinez P., Pardo B. G. and Jankun M. 2000 A population analysis of the structure and variability of NOR in Salmo trutta by Ag, CMA 3 and ISH. Genetica 108, 113–118.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • IGOR SOARES DE OLIVEIRA
    • 1
  • RAFAEL BUENO NOLETO
    • 2
  • ADRIELE KARLOKOSKI CUNHA DE OLIVEIRA
    • 3
  • LUÍS FELIPE TOLEDO
    • 1
  • MARTA MARGARETE CESTARI
    • 4
  1. 1.Laboratório de História Natural de Anfíbios Brasileiros, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Departamento de BiologiaUniversidade Estadual do ParanáUnião da VitóriaBrazil
  3. 3.Departamento de ZoologiaUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Laboratório de Citogenética Animal e Mutagênese Ambiental, Departamento de GenéticaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations