Skip to main content
Log in

Molecular diversity and genetic relationships in Secale

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The objective of this study was to quantify the molecular diversity and to determine the genetic relationships among Secale spp. and among cultivars of Secale cereale using RAPDs, ISSRs and sequence analysis of six exons of ScMATE1 gene. Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDs and 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primers generated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further, 69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of the ScMATE1 gene also demonstrated a high genetic variability that subsists in Secale genus. One difference observed in exon 1 sequences from S. vavilovii seems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs, ISSRs and exons of ScMATE1 gene were similar. S. ancestrale, S. kuprijanovii and S. cereale were grouped in the same cluster and S. segetale was in another cluster. S. vavilovii showed evidences of not being clearly an isolate species and having great intraspecific differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Achrem M., Kalinka A. and Rogalska S. M. 2014 Assessment of genetic relationships among Secale taxa by using ISSR and IRAP markers and the chromosomal distribution of the ACC microsatellite sequence. Turk. J. Bot. 38, 213– 225.

    Article  CAS  Google Scholar 

  • Bolibok H., Rakoczy-Trojanowska M., Hromada A. and Pietrzykowsky R. 2005 Efficiency of different PCR-based marker systems in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica 146, 109–116.

    Article  CAS  Google Scholar 

  • Bolibok-Brȧgoszewska H., Heller-Uszyńska K., Wenzl P, Uszyński G., Kilian A. and Rakoczy-Trojanowska M. 2009 DArT markers for the rye genome—genetic diversity and mapping. BMC Genomics 10, 578.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bushuk W. 2001 Rye production and uses worldwide. Cereal Foods World 46, 70–73.

    Google Scholar 

  • Chikmawati T., Skovmand B. and Gustafson J. P. 2005 Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. Genome 48, 792–801.

    Article  CAS  PubMed  Google Scholar 

  • Chikmawati T., Miftahudin M., Skovmand B. and Gustafson J. P. 2012 Amplified fragment length polymorphism-based genetic diversity among cultivated and weedy rye (Secale cereale L.) accessions. Genet. Resour. Crop Evol. 59, 1743–1752.

    Article  CAS  Google Scholar 

  • Cuadrado A. and Jouve N. 2002 Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. J. Hered. 93, 339–345.

    Article  CAS  PubMed  Google Scholar 

  • De Bustos A. and Jouve N. 2002 Phylogenetic relationship of genus Secale based on the characterization of rDNA ITS sequences. Plant Syst. Evol. 235, 147–154.

    Article  CAS  Google Scholar 

  • Dedio W., Kaltsikes P. J. and Larter E. N. 1969 Numerical chemotaxonomy in the genus Secale. Can. J. Bot. 47, 1175– 1180.

    Article  Google Scholar 

  • Fernández M. E., Figueiras A. M. and Benito C. 2002 The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet. 104, 845–851.

    Article  PubMed  Google Scholar 

  • Frederiksen S. and Petersen G. 1998 A taxonomic revision of the genus Secale (Triticeae; Poaceae). Nord. J. Bot. 18, 399–420.

    Article  Google Scholar 

  • Fu S., Tang Z., Ren Z., Zhang H. and Yan B. 2010 Isolation of rye-specific DNA fragment and genetic diversity analysis of rye Secale L. using wheat SSR markers. J. Genet. 89, 489–492.

    Article  PubMed  Google Scholar 

  • Jenabi T., Saeidi H. and Rahiminejad R. M. 2011 Biodiversity of Secale strictum in Iran measured using microsatellites. Genet. Resour. Crop Evol. 58, 497–505.

    Article  Google Scholar 

  • Jones R. N., González-Sánchez M., González-García M., Vega J. M. and Puertas M. J. 2008 Chromosomes with a life of their own. Cytogenet. Genome Res. 120, 265–280.

    Article  CAS  PubMed  Google Scholar 

  • Khush G. S. 1962 Cytogenetic and evolutionary studies in Secale II. Interrelationships in the wild species. Evolution 16, 484–496.

    Article  Google Scholar 

  • Librado P. and Rozas J. 2009 DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Loarce Y., Gallego R. and Ferrer E. 1996 A comparative analysis of genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica 88, 107–115.

    Article  Google Scholar 

  • Ma J. F., Nagao K., Sato K., Ito H., Furukawa J. and Takeda K. 2004 Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J. Exp. Bot. 55, 1335–1341.

    Article  CAS  PubMed  Google Scholar 

  • Mantel N. 1967 The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220.

    CAS  PubMed  Google Scholar 

  • Matos M., Pinto-Carnide O. and Benito C. 2001 Phylogenetic relationships among Portuguese rye based on isozyme, RAPD and ISSR markers. Hereditas 134, 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Michelmore R. W., Paran I. and Kesseli R. V. 1991 Identification of markers linked to disease resistance genes by bulk segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci.USA 88, 9828–9832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M. and Li W. H. 1979 Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prevost A. and Wilkinson M. J. 1999 A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98, 107–112.

    Article  CAS  Google Scholar 

  • Raina S. N., Rani V., Kojima T., Ogihara Y., Singh K. P. and Devarumath R. M. 2001 RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44, 763–772.

    Article  CAS  PubMed  Google Scholar 

  • Ren T. H., Chen F., Zou Y. T., Jia Y. H., Zhang H. Q., Yan B. J. and Ren Z. L. 2011 Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. Genome 54, 316–326.

    Article  CAS  PubMed  Google Scholar 

  • Rohlf M. 1998 NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.02i. Department of Ecology and Evolution. State University of New York, Setauket, USA.

  • Roldán-Ruiz I., Dendauw J., Van Bockstaele E., Depicker A. and De Loose M. 2000 AFLP markers reveal high polymorphic rates in ryegrass (Lolium spp.) Mol. Breed. 6, 125– 134.

    Article  Google Scholar 

  • Sencer H. A. and Hawkes J. G. 1980 On the origin of cultivated rye. Biol. J. Linn. Soc. 13, 299–313.

    Article  Google Scholar 

  • Shang H. Y., Wei Y. M., Wang X. R. and Zheng Y. L. 2006 Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers. Genet. Mol. Biol. 29, 685–691.

    Article  CAS  Google Scholar 

  • Silva-Navas J., Benito C., Téllez-Robledo B., El-Moneim D. A. and Gallego F. J. 2012 The ScAACT1 gene at the Q a l t5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.) Mol. Breed. 30, 845–856.

    Article  CAS  Google Scholar 

  • Sorkheh K., Shiran B., Gradziel T. M., Epperson B. K., Martíne-Gómez P. and Asadi E. 2007 Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156, 327–344.

    Article  CAS  Google Scholar 

  • Srivastava P. P., Vijayan K., Awasthi A. K. and Saratchandra B. 2004 Genetic analysis of Morus alba through RAPD and ISSR markers. Indian J. Biotechnol. 3, 527–532.

    CAS  Google Scholar 

  • Stutz H. C. 1972 On the origin of cultivated rye. Am. J. Bot. 59, 59–70.

    Article  Google Scholar 

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007 MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tanyolac B. 2003 Inter-simple sequence repeat (ISSR) and RAPD variation among wild barley (Hordeum. vulgare subsp. spontaneum) populations from west Turkey. Genet. Resour. Crop Evol. 50, 611–614.

    Article  CAS  Google Scholar 

  • Vavilov N. 1926 Studies of the origin of cultivated plants. Bull. Appl. Bot. Genet. Plant Breed. 16, 1–248.

    Google Scholar 

  • Vences F. J., Vaquero F. and Pérez de la Vega M. 1987 Phylogenetic relationships in Secale (Poaceae): an isozymatic study. Plant Syst. 157, 33–47.

    Article  Google Scholar 

  • Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A. and Tingey S. V. 1990 DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap I. and Nelson R. J. 1996 Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion Paper Series No. 14. International Rice Research Institute, P.O. Box 933, Manila, Philippines.

  • Zhou J., Yang Z., Li G., Liu C., Tang Z., Zhang Y. and Ren Z. 2010 Diversified chromosomal distribution of tandemly repeated sequences revealed evolutionary trends in Secale (Poaceae). Plant Syst. Evol. 287, 49–56.

    Article  CAS  Google Scholar 

  • Zietkiewicz E., Rafalski A. and Labuda D. 1994 Genome fingerprinting by simple sequence repeat (SSR-An shored) polymerase shine reaction amplification. Genomics 20, 176– 183.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Acción Integrada España-Portugal (PT2009-0096 and E-171/10) and PhD grant from Fundação para a Ciência e Tecnologia de Portugal (SFRH/BD/65040/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. MATOS.

Additional information

[Santos E., Matos M., Silva P., Figueiras A. M., Benito C. and Pinto-Carnide O. 2016 Molecular diversity and genetic relationships in Secale. J. Genet. 95, xx–xx]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 610 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SANTOS, E., MATOS, M., SILVA, P. et al. Molecular diversity and genetic relationships in Secale . J Genet 95, 273–281 (2016). https://doi.org/10.1007/s12041-016-0632-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0632-3

Keywords

Navigation