Skip to main content
Log in

Biallelic expression of Tssc4, Nap1l4, Phlda2 and Osbpl5 in adult cattle

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Genomic imprinting of the Cdkn1c/Kcnq1ot1 region shows lack of conservation between human and mouse. This region has been reported to be associated with Beckwith–Wiedemann syndrome (BWS) and cancer. To increase our understanding of imprinted genes in bovine Cdkn1c/Kcnq1ot1 imprinting cluster, we assessed the imprinting status of four cattle genes (Tssc4, Nap1l4, Phlda2 and Osbpl5) in seven types of tissues: heart, liver, spleen, lung, kidney, skeletal muscle and subcutaneous fat using polymorphism-based sequencing approach. It was found that all the four genes showed biallelic expression in tissues in which transcripts were detected. Nap1l4 and Tssc4 were detected in all examined tissues, while the expression of Phlda2 and Osbpl5 was tissue-specific. Phlda2 was not detected in heart and subcutaneous fat, and Osbpl5 was not detected in spleen and skeletal muscle. In addition, identification of species-specific imprinted genes is necessary to understand the evolution of genomic imprinting and to elucidate mechanisms leading to allele-specific expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Bischoff S. R., Tsai S., Hardison N., Motsinger-Reif A. A., Freking B. A. and Piedrahita J. A. 2009 Functional genomic approaches for the study of fetal/placental development in swine with special emphasis on imprinted genes. Soc. Reprod. Fertil. Suppl. 66, 245–264.

    CAS  PubMed  Google Scholar 

  • Frank D., Mendelsohn C. L., Ciccone E., Svensson K., Ohlsson R. and Tycko B. 1999 A novel pleckstrin homology-related gene family defined by Ipl/Tssc3, TDAG51, and Tih1: tissue-specific expression, chromosomal location, and parental imprinting. Mamm. Genome 10, 1150–1159.

    Article  CAS  PubMed  Google Scholar 

  • Frank D., Fortino W., Clark L., Musalo R., Wang W., Saxena A. et al. 2002 Placental overgrowth in mice lacking the imprinted gene Ipl. Proc. Natl. Acad. Sci. USA 99, 7490–7495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frost J. M., Udayashankar R., Moore H. D. and Moore G. E. 2010 Telomeric NAP1L4 and OSBPL5 of the KCNQ1 cluster, and the DECORIN gene are not imprinted in human trophoblast stem cells. PLoS One 5, e11595.

    Article  PubMed Central  PubMed  Google Scholar 

  • Higashimoto K., Soejima H., Saito T., Okumura K. and Mukai T. 2006 Imprinting disruption of the CDKN1C/KCNQ1OT1 domain: the molecular mechanisms causing Beckwith–Wiedemann syndrome and cancer. Cytogenet. Genome Res. 113, 306–312.

    Article  CAS  PubMed  Google Scholar 

  • Hu R. J., Lee M. P., Johnson L. A. and Feinberg A. P. 1996 A novel human homologue of yeast nucleosome assembly protein, 65 kb centromeric to the p57(KIP2) gene, is biallelically expressed in fetal and adult tissues. Hum. Mol. Genet. 5, 1743– 1748.

    Article  CAS  PubMed  Google Scholar 

  • Kawahara M. and Kono T. 2012 Roles of genes regulated by two paternally methylated imprinted regions on chromosomes 7 and 12 in mouse ontogeny. J. Reprod. Dev. 58, 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Khatib H., Zaitoun I. and Kim E. S. 2007 Comparative analysis of sequence characteristics of imprinted genes in human, mouse and cattle. Mamm. Genome 18, 538–547.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee M. P., Hu R. J., Johnson L. A. and Feinberg A. P. 1997 Human KvLQT1 gene shows tissue specific imprinting and encompassesBeckwith–Wiedemann syndrome chromosomal rearrangements. Nat. Genet. 15, 181–185.

    Article  PubMed  Google Scholar 

  • Lee M. P., Brandenburg S., Landes G. M., Adams M., Miller G. and Feinberg A. P. 1999 Two novel genes in the center of the 11p15 imprinted domain escape genomic imprinting. Hum. Mol. Genet. 8, 683–690.

    Article  CAS  PubMed  Google Scholar 

  • Li S., Li J., Tian J., Dong R., Wei J., Qiu X. et al. 2012 Characterization, tissue expression, and imprinting analysis of the porcine CDKN1C and NAP1L4 genes. J. Biomed. Biotechnol. 2012, 946527.

    PubMed Central  PubMed  Google Scholar 

  • Mitsuya K., Meguro M., Lee M. P., Katoh M., Schulz T. C., Kugoh H. et al. 1999 LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum. Mol. Genet. 8, 1209–1217.

    Article  CAS  PubMed  Google Scholar 

  • Monk D., Arnaud P., Apostolidou S., Hills F. A., Kelsey G., Stanier P. et al. 2006 Limited evolutionary conservation of imprinting in the human placenta. Proc. Natl. Acad. Sci. USA 103, 6623–6628.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morison I. M., Ramsay J. P. and Spencer H. G. 2005 A census of mammalian imprinting. Trends Genet. 21, 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson R., Hedborg F., Holmgren L., Walsh C. and Ekström T. J. 1994 Overlapping patterns of IGF2 and H19 expression during human development: biallelic IGF2 expression correlates with a lack of H19 expression. Development 120, 361–368.

    CAS  PubMed  Google Scholar 

  • Okuwaki M., Kato K. and Nagata K. 2010 Functional characterization of human nucleosome assembly protein 1-like proteins as histone chaperones. Genes Cells 15, 13–27.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen M., El-Maarri O., Engemann S., Strödicke M., Franck O., Davies K. et al. 2000 Sequence conservation and variability of imprinting in the Beckwith–Wiedemann syndrome gene cluster in human and mouse. Hum. Mol. Genet. 9, 1829–1841.

    Article  CAS  PubMed  Google Scholar 

  • Qian N., Frank D., O’Keefe D., Dao D., Zhao L., Yuan L. et al. 1997 The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum. Mol. Genet. 6, 2021–2029.

    Article  CAS  PubMed  Google Scholar 

  • Reik W. and Walter J. 2001 Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Reik W., Santos F. and Dean W. 2003 Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology 59, 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez P., Munroe D., Prawitt D., Chu L. L., Bric E., Kim J. et al. 1997 Functional characterization of human nucleosome assembly protein-2 (NAP1L4) suggests a role as a histone chaperone. Genomics 44, 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Salas M., John R., Saxena A., Barton S., Frank D., Fitzpatrick G. et al. 2004 Placental growth retardation due to loss of imprinting of Phlda2. Mech. Dev. 121, 1199–1210.

    Article  CAS  PubMed  Google Scholar 

  • Sikora K. M., Magee D. A., Berkowicz E. W., Lonergan P., Evans A. C., Carter F. et al. 2012 PHLDA2 is an imprinted gene in cattle. Anim. Genet. 43, 587–590.

    Article  CAS  PubMed  Google Scholar 

  • Tunster S. J., Tycko B. and John R. M. 2010 The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol. Cell. Biol. 30, 295–306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Umlauf D., Goto Y., Cao R., Cerqueira F., Wagschal A., Zhang Y. et al. 2004 Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of polycomb group complexes. Nat. Genet 36, 1296–1300.

    Article  CAS  PubMed  Google Scholar 

  • Zaitoun I. and Khatib H. 2008 Comparative genomic imprinting and expression analysis of six cattle genes. J. Anim. Sci. 86, 25–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by National Natural Science Foundation of China (31372312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHIJIE LI.

Additional information

[Wang M., Li D., Zhang M., Yang W., Wu G., Cui Y. and Li S. 2015 Biallelic expression of Tssc4, Nap1l4, Phlda2 and Osbpl5 in adult cattle. J. Genet. 94, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

WANG, M., LI, D., ZHANG, M. et al. Biallelic expression of Tssc4, Nap1l4, Phlda2 and Osbpl5 in adult cattle. J Genet 94, 391–395 (2015). https://doi.org/10.1007/s12041-015-0530-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0530-0

Keywords

Navigation