Skip to main content
Log in

Detection of novel key residues of MnSOD enzyme and its role in salinity management across species

  • ONLINE RESOURCES
  • Published:
Journal of Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Abogadallah G. M. 2010 Antioxidative defence under salt stress. Plant Signal. Behav. 5, 369–374.

  • Alscher R. G., Erturk N. and Heath L. S. 2002 Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331–1341.

  • Ashraf M. 2009 Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27, 84–93.

  • Ashraf M. and Ali Q. 2008 Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ. Exp. Bot. 63, 266–273.

  • Badawi G. H., Yamauchi Y., Shimada E., Sasaki R., Kawano N. and Tanaka K. 2004 Enhanced tolerance to salt stress and water deficit by over expressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci. 166, 919–928.

  • Borgstahl G. E., Parge H. E., Hickey M. J., Johnson M. J., Boissinot M., Hallewell R. A. et al. 1996 Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry 35, 4287–4297.

  • Clements M. and Foster S. 1999 Stress resistance in Staphylococcus aureus. Trends Microbiol. 7, 458–462.

  • DasSarma S. and Arora P. 2002 Halophiles. In Encyclopedia of life sciences. 8, pp. 458–466. Nature Publishing Group, London, UK.

  • Davenport S. B., Gallego S. M., Benavides M. P. and Tomaro M. L. 2003 Behavior of antioxidant defence system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul. 40, 81–88.

  • Dewey P. R. 1962 Breeding crested wheatgrass for salt tolerance. Crop. Sci. 2, 403–407.

  • diSioudi B., Grimsley J. K., Lai K. and Wild J. R. 1999 Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. Biochemistry 38, 2866–2872.

  • Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M. et al. 2006 Comparative protein structure modeling using Modeller. In Current protocols in bioinformatics (ed. J. E. Coligan, B. M. Dunn, D. W. Speicher and P. T. Wingfield). Chapter 5: Unit 5.6. (doi: 10.1002/0471250953.bi0506s15).

  • Flowers T. J. 2004 Improving crop salt tolerance. J. Exp. Bot. 55, 307–319.

  • Flowers T. J., Hajibagheri M. A. and Clipson N. J. W. 1986 Halophytes. Q. Rev. Biol. 61, 313–337.

  • Glenn E. P. and Brown J. J. 1999 Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18, 227–255.

  • Hussain K., Nisar M. F., Majeed A., Nawaz K., Bhatti K. H., Afghan S. et al. 2010 What molecular mechanism is adapted by plants during salt stress tolerance?. Afr. J. Biotechnol. 9, 416–422.

  • Kato A., Doi H., Nakada T., Sakai H. and Hirose S. 2005 Takifugu obscurus is a euryhaline fugu species very close to Takifugu rubripes and suitable for studying osmoregulation. BMC Physiol. 5, 18.

  • Krieger E., Joo K., Lee J., Raman S., Thompson J., Tyka M. et al. 2009 Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling. Four approaches that performed well in CASP8. Proteins 77, suppl. 9, 114-122.

  • Kunin C. M. and Rudy J. 1991 Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and Staphylococci. J. Lab. Clin. Med. 118, 217–224.

  • Kushner D. J. 1978 Life in high salt and solute concentrations: halophilic bacteria. In Microbial life in extreme environments (ed. D. J. Kushner), pp. 317–368. Academic Press, London, UK

  • Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H. et al. 2007 Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948.

  • Ludwig M. L., Metzger A. L., Pattridge K. A. and Stallings W. C. 1991 Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1.8 Angstrom resolution. J. Mol. Biol. 219, 335–358.

  • Marchler-Bauer A., Zheng C., Chitsaz F., Derbyshire M. K., Geer L. Y., Geer R. C. et al. 2013 CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41, 348–352.

  • Meloni D. A., Oliva M. A., Martinez C. A. and Cambraia J. 2003 Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 49, 69–76.

  • Neto A. D. A., Prisco J. T., Eneas-Filho J., Abreu C. E. B. and Gomez-Filho E. 2006 Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56, 87–94.

  • Oren A. 2005 A hundred years of Dunaliella research: 1905–2005. Saline Syst. 12, 2.

  • Perry J. J. P. ShinD. S., Getzoff E. D. and Tainer J. A.2010 The structural biochemistry of the superoxide dismutasesm. Biochim. Biophys. Acta 1804, 245–262.

  • Rahnama H. and Ebrahimzadeh H. 2006 Antioxidant isozymes activities in potato plants (Solanum tuberosum L.) under salt stress. J. Sci. I. R. Iran 17, 225–230.

  • Ramachandran G. N., Ramakrishnan C. and Sasisekharan V. 1963 Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99.

  • Resley M., Webb K. and Holt J. 2006 Growth and survival of juvenile cobia, Rachycentron canadum, at different salinities in a recirculating aquaculture system. Aquaculture 253, 398–407.

  • Rossi K. A., Weigelt C. A., Nayeem A. and Krystek Jr S. R. 2007 Loopholes and missing links in protein modelling. Protein Sci. 16, 1999–2012.

  • Rowland G. G., McHughen A. and McOnie C. 1989 Field performance at saline-affected sites of a somaclonal variant of McGregor flax selected for salt tolerance in vitro. Can. J. Plant Sci. 69, 49–60.

  • Russell B. C. and Houston W. 1989 Offshore fishes of the Arafura Sea. Beagle 6, 69–84

  • Sairam R. K., Srivastava G. C., Agarwal S. and Meena R. C. 2005 Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49, 85–91.

  • Shalata A., Mittova V., Volokita M., Guy M. and Tal M. 2001 Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 112, 487–494.

  • Shen M. Y. and Sali A. 2006 Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524.

  • Sherraf I., Tizroutine S., Chaput M. H., Allot M., Mussio I., Sihachakr D., Rossignol L. and Ducreux G. 1994 Production and characterization of intergeneric somatic hybrids through protoplast electrofusion between potato (Solanum tuberosum) and Lycopersicon pennellii. Plant Cell Tissue Organ Cult. 37, 137-144.

  • Sines J., Allison S., Wierzbicki A. and McCammon J. A. 1990 Brownian dynamics simulation of the superoxide-superoxide dismutase reaction: iron and manganese enzymes. J. Phys. Chem. 94, 959–961.

  • Taji T., Seki M., Satou M., Sakurai T., Kobayashi M., Ishiyama K. et al. 2004 Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 135, 1697–1709.

  • Tanaka Y., Hibino T., Hayashi Y., Tanaka A., Kishitani S., Takab T. et al. 1999 Salt tolerance of transgenic rice over expressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 148, 131–138.

  • Wang Y., Ying Y., Chen J. and Wang X. C. 2004 Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt tolerance. Plant Sci. 167, 671–677.

  • Wang, Y., Wisniewski M., Meilan R., Uratsu S. L., Cui M. G., Dandekar A. et al. 2007 Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. J. Appl. Hort. 9, 3–8.

  • Wells K. D. 2007 The ecology and behavior of amphibians. University of Chicago Press, Chicago, Illinois.

  • Yeo A. R., Koyama M. L., Chinta S. and Flowers T. 2000 Salt tolerance at the whole plant level. In: Plant tolerance to abiotic stresses in agriculture: role of genetic engineering (ed. J H. Cherry), vol. 3, pp. 107–123. Kluwer, The Netherlands.

Download references

Acknowledgements

This study was supported by World Bank Funded National Agricultural Innovation Project (NAIP), ICAR Grants NAIP/Comp-4/C4/C-30033/2008-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. RAO.

Additional information

[Rao A. R., Dash M., Sahu T. K., Behera B. K. and Mohapatra T. 2014 Detection of novel key residues of Mn SOD enzyme and its role in salinity management across species. J. Genet. 93, e8–e16. Online only: http://www.ias.ac.in/jgenet/OnlineResources/93/e8.pdf]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAO, A.R., DASH, M., SAHU, T.K. et al. Detection of novel key residues of MnSOD enzyme and its role in salinity management across species. J Genet 94 (Suppl 1), 8–16 (2015). https://doi.org/10.1007/s12041-014-0333-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0333-8

Keywords

Navigation