Advertisement

Journal of Genetics

, Volume 92, Issue 1, pp 155–161 | Cite as

Gene duplication as a major force in evolution

  • SANTOSHKUMAR MAGADUMEmail author
  • URBI BANERJEE
  • PRIYADHARSHINI MURUGAN
  • DODDABHIMAPPA GANGAPUR
  • RAJASEKAR RAVIKESAVAN
Review Article

Abstract

Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Many new gene functions have evolved through gene duplication and it has contributed tremendously to the evolution of developmental programmes in various organisms. Gene duplication can result from unequal crossing over, retroposition or chromosomal (or genome) duplication. Understanding the mechanisms that generate duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on localized and genomewide aspects of evolutionary forces shaping intra-specific and inter-specific genome contents, evolutionary relationships, and interactions. Based on whole-genome analysis of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for creation of many important developmental and regulatory genes found in extant angiosperm genomes. Recent studies also provide strong indications that even yeast (Saccharomyces cerevisiae), with its compact genome, is in fact an ancient tetraploid. Gene duplication can provide new genetic material for mutation, drift and selection to act upon, the result of which is specialized or new gene functions. Without gene duplication the plasticity of a genome or species in adapting to changing environments would be severely limited. Whether a duplicate is retained depends upon its function, its mode of duplication, (i.e. whether it was duplicated during a whole-genome duplication event), the species in which it occurs, and its expression rate. The exaptation of preexisting secondary functions is an important feature in gene evolution, just as it is in morphological evolution.

Keywords

diversity duplicated genes evolution genome duplication mutation polyploidy 

References

  1. Adams K. L. and Wendel J. F. 2005 Allele-specific, bi-directional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171, 2139–2142.PubMedCrossRefGoogle Scholar
  2. Adams K. L., Percifield R. and Wendel J. F. 2004 Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168, 2217–2226.PubMedCrossRefGoogle Scholar
  3. Arabidopsis Genome Initiative 2000 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.CrossRefGoogle Scholar
  4. Bailey J. A., Liu G. and Eichler E. E. 2003 An Alu transposition model for the origin and expansion of human segmental duplications. Am. J. Hum. Genet. 73, 823–834.PubMedCrossRefGoogle Scholar
  5. Bergman J. 2006 Does gene duplication provide the engine for evolution? J. Creation 20, 99–104.Google Scholar
  6. Blanc G. and Wolfe K. H. 2004 Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679–1691.PubMedCrossRefGoogle Scholar
  7. Bowers J. E., Chapman B. A., Rong J. and Paterson A. H. 2003 Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438.PubMedCrossRefGoogle Scholar
  8. Bridges C. B. 1936 The Bar gene a duplication. Science 83, 210–211.PubMedCrossRefGoogle Scholar
  9. Brosius J. 1991 Retroposons – seeds of evolution. Science 251, 753.PubMedCrossRefGoogle Scholar
  10. Chapman B. A., Bowers J. E., Feltus F. A. and Paterson A. H. 2006 Buffering crucial functions by paleologous duplicated genes may impart cyclicality to angiosperm genome duplication. Proc. Natl. Acad. Sci. USA 103, 2730–2735.PubMedCrossRefGoogle Scholar
  11. Coghlan A., Eichler E. E., Oliver S. G., Paterson A. H. and Stein L. 2005 Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet. 21, 673–682.PubMedCrossRefGoogle Scholar
  12. Crane P. R., Friis E. M. and Pedersen K. R. 1995 The origin and early diversification of angiosperms. Nature 374, 27–33.CrossRefGoogle Scholar
  13. Crane P. R., Herendeen P. and Friis E. M. 2004 Fossils and plant phylogeny. Am. J. Bot. 91, 1683–1699.PubMedCrossRefGoogle Scholar
  14. Davies T. J., Barraclough T. G., Chase M. W., Soltis P. S., Soltis D. E. and Savolainen V. 2004 Darwin’s abominable mystery: Insights from a super tree of the angiosperms. Proc. Natl. Acad. Sci. USA 101, 1904–1909.PubMedCrossRefGoogle Scholar
  15. De Bodt S., Maere S. and Van de Peer Y. 2005 Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 20, 591–597.PubMedCrossRefGoogle Scholar
  16. Delcher A. L., Kasif S., Fleischmann R. D., Peterson J., White O. and Salzberg S. L. 1999 Alignment of whole genomes. Nucleic Acids Res. 27, 2369–2376.PubMedCrossRefGoogle Scholar
  17. Doyle J. A. and Donoghue M. J. 1993 Phylogenies and angiosperm diversification. Paleobiology 19, 141–167.Google Scholar
  18. Force A., Cresko W. A., Pickett F. B., Proulx S. R., Amemiya C. and Lynch M. 1999 The origin of subfunctions and modular gene regulation. Genetics 170, 433–446.CrossRefGoogle Scholar
  19. Gaut B. S. and Doebley J. F. 1997 DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94, 6809–6814.PubMedCrossRefGoogle Scholar
  20. Goff S. A., Ricke D., Lan T. H., Presting G., Wang R., Dunn M. et al. 2002 A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.PubMedCrossRefGoogle Scholar
  21. Grant V. 1981 Plant speciation, 2nd edition. Columbia University Press, New York, USAGoogle Scholar
  22. Gupta P. K. 2007 Duplication and deficiencies. In Cytogenetics, 7th edition, pp. 19–43. Rastogi Publication, Meerut, India.Google Scholar
  23. Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y. et al. 1998 A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148, 479–494.PubMedGoogle Scholar
  24. Hughes A. L. and Nei M. 1989 Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol. Biol. Evol. 6, 559–579.PubMedGoogle Scholar
  25. Hurles M. 2004 Gene duplication: the genomic trade in spare parts. PloS Biol. 2, 900–904.CrossRefGoogle Scholar
  26. Hurst L. D. and Smith N. G. C. 1998 The evolution of concerted evolution. Proc. R. Soc. London. Ser. B 265, 121–127.CrossRefGoogle Scholar
  27. Kellis M., Birren B. W. and Lander E. S. 2004 Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cereviseae. Nature 428, 617–624.PubMedCrossRefGoogle Scholar
  28. Ku H. M., Vision T., Liu J. and Tanksley S. D. 2000 Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97, 9121–9126.PubMedCrossRefGoogle Scholar
  29. Levy A. A. and Feldman M. 2002 The impact of polyploidy on grass genome evolution. Plant Physiol. 130, 1587–1593.PubMedCrossRefGoogle Scholar
  30. Li W. H. 1997 Molecular evolution, 1st edition. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  31. Linardopoulou E. V., Williams E. M., Fan Y., Friedman C., Young J. M. and Trask B. J. 2005 Human sub-telomeres are hot spots of inter chromosomal recombination and segmental duplication. Nature 437, 94–100.PubMedCrossRefGoogle Scholar
  32. Long M., Betran E., Thornton K. and Wang W. 2003 The origin of new genes: glimpses from the young and old. Nat. Rev. Genet. 4, 865–875.PubMedCrossRefGoogle Scholar
  33. Lynch M. and Conery J. S. 2000 The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155.PubMedCrossRefGoogle Scholar
  34. Maere S., De Bodt S., Raes J., Casneuf T., Van Montagu M., Kuiper M. and Van de Peer Y. 2005 Modeling gene and genome duplications in eukaryotes. Proc. Natl. Acad. Sci. USA 102, 5454–5459.PubMedCrossRefGoogle Scholar
  35. Masterson J. 1994 Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421–423.PubMedCrossRefGoogle Scholar
  36. Mayer K., Schüller C., Wambutt R., Murphy G., Volckaert G., Pohl T. et al. 1999 Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402, 769–777.PubMedCrossRefGoogle Scholar
  37. Nei M., Rogozin I. B. and Piontkivska H. 2000 Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc. Natl. Acad. Sci. USA 97, 10866–10871.PubMedCrossRefGoogle Scholar
  38. Ni Z., Kim E. D. , Ha M., Lackey E., Liu J., Zhang Y. et al. 2009 Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457, 327–331.PubMedCrossRefGoogle Scholar
  39. Nowak M. A., Boerlijst M. C. and Smith J. M. 1997 Evolution of genetic redundancy. Nature 388, 167–171.PubMedCrossRefGoogle Scholar
  40. Ohno S. 1970 Evolution by gene duplication. Springer-Verlag, New York, USA.Google Scholar
  41. Ota T. and Nei M. 1995 Evolution of immunoglobulin VH pseudogenes in chickens. Mol. Biol. Evol. 12, 94–102.PubMedCrossRefGoogle Scholar
  42. Pan D. and Zhang L. 2007 Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: a novel strategy to estimate gene duplication rates. Genome Biol. 8, R158.CrossRefGoogle Scholar
  43. Rouquier S., Blancher A. and Giorgi D. 2000 The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc. Natl. Acad. Sci. USA 97, 2870–2874.PubMedCrossRefGoogle Scholar
  44. Samonte R. V. and Eichler E. E. 2002 Segmental duplications and the evolution of the primate genome. Nat. Rev. Genet. 3, 65–72.PubMedCrossRefGoogle Scholar
  45. Sasaki T. and Burr B. 2000 International rice genome sequencing project. The effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3, 138–141.PubMedCrossRefGoogle Scholar
  46. Shanks N. 2004 God, the devil, and darwin. Oxford University Press, New York, USA.CrossRefGoogle Scholar
  47. Simillion C., Vandepoele K., Van Montagu M. C., Zabeau M. and Van de Peer Y. 2002 The hidden duplication past of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 99, 13627–13632.PubMedCrossRefGoogle Scholar
  48. Stuessy T. F. 2004 A transitional–combinatorial theory for the origin of angiosperms. Taxon 53, 3–16.CrossRefGoogle Scholar
  49. Thomas B. C., Pedersen B. and Freeling M. 2006 Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homologue leaving clusters enriched in the sensitive genes. Genome Res. 16, 934–946.PubMedCrossRefGoogle Scholar
  50. Vinckenbosch N., Dupanloup I. and Kaessamann H. 2006 Evolutionary fate of retroposed gene copies in the human genome. Proc. Natl. Acad. Sci. USA 103, 3220–3225.PubMedCrossRefGoogle Scholar
  51. Wilson W. A., Harrington S. E., Woodman W. L., Lee M., Sorrells M. E. and McCouch S. R. 1999 Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153, 453–473.PubMedGoogle Scholar
  52. Wing S. L. and Boucher L. D. 1998 Ecological aspects of the cretaceous flowering plant radiation. Annu. Rev. Earth Planet Sci. 26, 379–421.CrossRefGoogle Scholar
  53. Wolfe K. H. and Shields D. C. 1997 Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713.PubMedCrossRefGoogle Scholar
  54. Xiao H., Jiang N., Schaffner E., Stockinger E. J. and van der Knaap E. 2008 A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530.PubMedCrossRefGoogle Scholar
  55. Zhang J. 2003 Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 192–198.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  • SANTOSHKUMAR MAGADUM
    • 1
    Email author
  • URBI BANERJEE
    • 2
  • PRIYADHARSHINI MURUGAN
    • 3
  • DODDABHIMAPPA GANGAPUR
    • 4
  • RAJASEKAR RAVIKESAVAN
    • 4
  1. 1.Department of Genetics and Plant BreedingG. B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.Department of Plant Molecular Biology and BiotechnologyTamil Nadu Agricultural University (TNAU)CoimbatoreIndia
  3. 3.Department of Environmental SciencesTamil Nadu Agricultural University (TNAU)CoimbatoreIndia
  4. 4.Centre for Plant Breeding and GeneticsTamil Nadu Agricultural University (TNAU)CoimbatoreIndia

Personalised recommendations