Skip to main content

Advertisement

Log in

Gene duplication as a major force in evolution

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Many new gene functions have evolved through gene duplication and it has contributed tremendously to the evolution of developmental programmes in various organisms. Gene duplication can result from unequal crossing over, retroposition or chromosomal (or genome) duplication. Understanding the mechanisms that generate duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on localized and genomewide aspects of evolutionary forces shaping intra-specific and inter-specific genome contents, evolutionary relationships, and interactions. Based on whole-genome analysis of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for creation of many important developmental and regulatory genes found in extant angiosperm genomes. Recent studies also provide strong indications that even yeast (Saccharomyces cerevisiae), with its compact genome, is in fact an ancient tetraploid. Gene duplication can provide new genetic material for mutation, drift and selection to act upon, the result of which is specialized or new gene functions. Without gene duplication the plasticity of a genome or species in adapting to changing environments would be severely limited. Whether a duplicate is retained depends upon its function, its mode of duplication, (i.e. whether it was duplicated during a whole-genome duplication event), the species in which it occurs, and its expression rate. The exaptation of preexisting secondary functions is an important feature in gene evolution, just as it is in morphological evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams K. L. and Wendel J. F. 2005 Allele-specific, bi-directional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171, 2139–2142.

    Article  PubMed  CAS  Google Scholar 

  • Adams K. L., Percifield R. and Wendel J. F. 2004 Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168, 2217–2226.

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative 2000 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  • Bailey J. A., Liu G. and Eichler E. E. 2003 An Alu transposition model for the origin and expansion of human segmental duplications. Am. J. Hum. Genet. 73, 823–834.

    Article  PubMed  CAS  Google Scholar 

  • Bergman J. 2006 Does gene duplication provide the engine for evolution? J. Creation 20, 99–104.

    Google Scholar 

  • Blanc G. and Wolfe K. H. 2004 Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679–1691.

    Article  PubMed  CAS  Google Scholar 

  • Bowers J. E., Chapman B. A., Rong J. and Paterson A. H. 2003 Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Bridges C. B. 1936 The Bar gene a duplication. Science 83, 210–211.

    Article  PubMed  CAS  Google Scholar 

  • Brosius J. 1991 Retroposons – seeds of evolution. Science 251, 753.

    Article  PubMed  CAS  Google Scholar 

  • Chapman B. A., Bowers J. E., Feltus F. A. and Paterson A. H. 2006 Buffering crucial functions by paleologous duplicated genes may impart cyclicality to angiosperm genome duplication. Proc. Natl. Acad. Sci. USA 103, 2730–2735.

    Article  PubMed  CAS  Google Scholar 

  • Coghlan A., Eichler E. E., Oliver S. G., Paterson A. H. and Stein L. 2005 Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet. 21, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Crane P. R., Friis E. M. and Pedersen K. R. 1995 The origin and early diversification of angiosperms. Nature 374, 27–33.

    Article  CAS  Google Scholar 

  • Crane P. R., Herendeen P. and Friis E. M. 2004 Fossils and plant phylogeny. Am. J. Bot. 91, 1683–1699.

    Article  PubMed  Google Scholar 

  • Davies T. J., Barraclough T. G., Chase M. W., Soltis P. S., Soltis D. E. and Savolainen V. 2004 Darwin’s abominable mystery: Insights from a super tree of the angiosperms. Proc. Natl. Acad. Sci. USA 101, 1904–1909.

    Article  PubMed  CAS  Google Scholar 

  • De Bodt S., Maere S. and Van de Peer Y. 2005 Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 20, 591–597.

    Article  PubMed  Google Scholar 

  • Delcher A. L., Kasif S., Fleischmann R. D., Peterson J., White O. and Salzberg S. L. 1999 Alignment of whole genomes. Nucleic Acids Res. 27, 2369–2376.

    Article  PubMed  CAS  Google Scholar 

  • Doyle J. A. and Donoghue M. J. 1993 Phylogenies and angiosperm diversification. Paleobiology 19, 141–167.

    Google Scholar 

  • Force A., Cresko W. A., Pickett F. B., Proulx S. R., Amemiya C. and Lynch M. 1999 The origin of subfunctions and modular gene regulation. Genetics 170, 433–446.

    Article  Google Scholar 

  • Gaut B. S. and Doebley J. F. 1997 DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94, 6809–6814.

    Article  PubMed  CAS  Google Scholar 

  • Goff S. A., Ricke D., Lan T. H., Presting G., Wang R., Dunn M. et al. 2002 A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Grant V. 1981 Plant speciation, 2nd edition. Columbia University Press, New York, USA

    Google Scholar 

  • Gupta P. K. 2007 Duplication and deficiencies. In Cytogenetics, 7th edition, pp. 19–43. Rastogi Publication, Meerut, India.

    Google Scholar 

  • Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y. et al. 1998 A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148, 479–494.

    PubMed  CAS  Google Scholar 

  • Hughes A. L. and Nei M. 1989 Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol. Biol. Evol. 6, 559–579.

    PubMed  CAS  Google Scholar 

  • Hurles M. 2004 Gene duplication: the genomic trade in spare parts. PloS Biol. 2, 900–904.

    Article  CAS  Google Scholar 

  • Hurst L. D. and Smith N. G. C. 1998 The evolution of concerted evolution. Proc. R. Soc. London. Ser. B 265, 121–127.

    Article  Google Scholar 

  • Kellis M., Birren B. W. and Lander E. S. 2004 Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cereviseae. Nature 428, 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Ku H. M., Vision T., Liu J. and Tanksley S. D. 2000 Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97, 9121–9126.

    Article  PubMed  CAS  Google Scholar 

  • Levy A. A. and Feldman M. 2002 The impact of polyploidy on grass genome evolution. Plant Physiol. 130, 1587–1593.

    Article  PubMed  CAS  Google Scholar 

  • Li W. H. 1997 Molecular evolution, 1st edition. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Linardopoulou E. V., Williams E. M., Fan Y., Friedman C., Young J. M. and Trask B. J. 2005 Human sub-telomeres are hot spots of inter chromosomal recombination and segmental duplication. Nature 437, 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Long M., Betran E., Thornton K. and Wang W. 2003 The origin of new genes: glimpses from the young and old. Nat. Rev. Genet. 4, 865–875.

    Article  PubMed  CAS  Google Scholar 

  • Lynch M. and Conery J. S. 2000 The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Maere S., De Bodt S., Raes J., Casneuf T., Van Montagu M., Kuiper M. and Van de Peer Y. 2005 Modeling gene and genome duplications in eukaryotes. Proc. Natl. Acad. Sci. USA 102, 5454–5459.

    Article  PubMed  CAS  Google Scholar 

  • Masterson J. 1994 Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421–423.

    Article  PubMed  CAS  Google Scholar 

  • Mayer K., Schüller C., Wambutt R., Murphy G., Volckaert G., Pohl T. et al. 1999 Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402, 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Nei M., Rogozin I. B. and Piontkivska H. 2000 Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc. Natl. Acad. Sci. USA 97, 10866–10871.

    Article  PubMed  CAS  Google Scholar 

  • Ni Z., Kim E. D. , Ha M., Lackey E., Liu J., Zhang Y. et al. 2009 Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Nowak M. A., Boerlijst M. C. and Smith J. M. 1997 Evolution of genetic redundancy. Nature 388, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Ohno S. 1970 Evolution by gene duplication. Springer-Verlag, New York, USA.

    Google Scholar 

  • Ota T. and Nei M. 1995 Evolution of immunoglobulin VH pseudogenes in chickens. Mol. Biol. Evol. 12, 94–102.

    Article  PubMed  CAS  Google Scholar 

  • Pan D. and Zhang L. 2007 Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: a novel strategy to estimate gene duplication rates. Genome Biol. 8, R158.

    Article  Google Scholar 

  • Rouquier S., Blancher A. and Giorgi D. 2000 The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc. Natl. Acad. Sci. USA 97, 2870–2874.

    Article  PubMed  CAS  Google Scholar 

  • Samonte R. V. and Eichler E. E. 2002 Segmental duplications and the evolution of the primate genome. Nat. Rev. Genet. 3, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T. and Burr B. 2000 International rice genome sequencing project. The effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3, 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Shanks N. 2004 God, the devil, and darwin. Oxford University Press, New York, USA.

    Book  Google Scholar 

  • Simillion C., Vandepoele K., Van Montagu M. C., Zabeau M. and Van de Peer Y. 2002 The hidden duplication past of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 99, 13627–13632.

    Article  PubMed  CAS  Google Scholar 

  • Stuessy T. F. 2004 A transitional–combinatorial theory for the origin of angiosperms. Taxon 53, 3–16.

    Article  Google Scholar 

  • Thomas B. C., Pedersen B. and Freeling M. 2006 Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homologue leaving clusters enriched in the sensitive genes. Genome Res. 16, 934–946.

    Article  PubMed  CAS  Google Scholar 

  • Vinckenbosch N., Dupanloup I. and Kaessamann H. 2006 Evolutionary fate of retroposed gene copies in the human genome. Proc. Natl. Acad. Sci. USA 103, 3220–3225.

    Article  PubMed  CAS  Google Scholar 

  • Wilson W. A., Harrington S. E., Woodman W. L., Lee M., Sorrells M. E. and McCouch S. R. 1999 Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153, 453–473.

    PubMed  CAS  Google Scholar 

  • Wing S. L. and Boucher L. D. 1998 Ecological aspects of the cretaceous flowering plant radiation. Annu. Rev. Earth Planet Sci. 26, 379–421.

    Article  CAS  Google Scholar 

  • Wolfe K. H. and Shields D. C. 1997 Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713.

    Article  PubMed  CAS  Google Scholar 

  • Xiao H., Jiang N., Schaffner E., Stockinger E. J. and van der Knaap E. 2008 A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J. 2003 Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 192–198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SANTOSHKUMAR MAGADUM.

Additional information

[Magadum S., Banerjee U., Murugan P., Gangapur D. and Ravikesavan R. 2013 Gene duplication as a major force in evolution. J. Genet. 92, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Cite this article

MAGADUM, S., BANERJEE, U., MURUGAN, P. et al. Gene duplication as a major force in evolution. J Genet 92, 155–161 (2013). https://doi.org/10.1007/s12041-013-0212-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-013-0212-8

Keywords

Navigation