Advertisement

Journal of Genetics

, Volume 91, Issue 3, pp 385–395 | Cite as

DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants

  • M. AKHTAR
  • A. JAISWAL
  • G. TAJ
  • J. P. JAISWAL
  • M. I. QURESHI
  • N. K. SINGH
Review Article

Abstract

Drought, high salinity and low temperature are major abiotic stresses that influence survival, productivity and geographical distribution of many important crops across the globe. Plants respond to these environmental challenges via physiological, cellular and molecular processes, which results in adjusted metabolic and structural alterations. The dehydration-responsive-element-binding (DREB) protein / C-repeat binding factors (CBFs) belong to APETALA2 (AP2) family transcription factors that bind to DRE/CRT cis-element and regulate the expression of stress-responsive genes. DREB1/CBF genes, therefore, play an important role in increasing stress tolerance in plants and their deployment using transgenic technology seems to be a potential alternative in management of abiotic stresses in crop plants. This review is mainly focussed on the structural characteristics as well as transcriptional regulation of gene expression in response to various abiotic stresses, with particular emphasis on the role of DREB1/CBF regulon in stress-responsive gene expression. The recent progress related to genetic engineering of DREB1/CBF transcription factors in various crops and model plants is also summarized.

Keywords

abiotic stress transcription factors DREB1/CBF 

Notes

Acknowledgement

Authors are thankful to Life Science Research Board of Defence Research and Development Organization, New Delhi, for financial support.

References

  1. Achard P., Gong F., Cheminant S., Alioua M., Hedden P. and Genschik P. 2008 The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20, 2117–2129.PubMedCrossRefGoogle Scholar
  2. Agarwal P. K., Agarwal P., Reddy M. K. and Sopory S. K. 2006 Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25, 1263–1274.PubMedCrossRefGoogle Scholar
  3. Allen M. D., Yamasaki K., Ohme-Takagi M., Tateno M. and Suzuki M. 1998 A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17, 5484–5496.PubMedCrossRefGoogle Scholar
  4. Bhatnagar-Mathur P., Devi M. J., Reddy D. S., Lavanya M., Vadez V., Serraj R. K. et al. 2007 Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep. 26, 2071–2082.PubMedCrossRefGoogle Scholar
  5. Burke E. J., Brown S. J. and Christidis N. 2006 Modelling the recent evolution of global drought and projections for the twenty-first century with the hadley centre climate model. J. Hydrometeor. 7, 1113–1125.CrossRefGoogle Scholar
  6. Century K., Reuber T. L. and Ratcliffe O. J. 2008 Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol. 147, 20–29.PubMedCrossRefGoogle Scholar
  7. Chen J. Q., Meng X. P., Zhang Y., Xia M. and Wang X. P. 2008 Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol. Lett. 30, 2191–2198.PubMedCrossRefGoogle Scholar
  8. Chen J. R., Lu J. J., Liu R., Xiong X. Y., Wang T. X., Chen S. Y. et al. 2010 DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regul. 60, 199–211.CrossRefGoogle Scholar
  9. Chen M., Wang Q. Y., Cheng X. G., Xu Z. S., Li L. C., Ye X. G. et al. 2007 GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 353, 299–305.PubMedCrossRefGoogle Scholar
  10. Chen W. and Zhu T. 2004 Networks of transcription factors with roles in environmental stress response. Trends Plant Sci. 9, 591–596.PubMedCrossRefGoogle Scholar
  11. Chinnusamy V., Ohta M., Kanrar S., Lee B. H., Hong X., Agarwal M. and Zhu J. K. 2003 ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes. Dev. 17, 1043–1054.PubMedCrossRefGoogle Scholar
  12. Chinnusamy V., Schumaker K. and Zhu J. K. 2004 Molecular genetic perspectives on cross-talk and specifcity in abiotic stress signalling in plants. J. Exp. Bot. 55, 225–236.PubMedCrossRefGoogle Scholar
  13. Choi D. W., Rodriguez E. M. and Close T. J. 2002 Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol. 129, 1781–1787.PubMedCrossRefGoogle Scholar
  14. Dubouzet J. G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E. G., Miura S. et al. 2003 OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33, 751–763.PubMedCrossRefGoogle Scholar
  15. Dutta A., Sen J. and Deswal R. 2007 Down regulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type C-repeat binding factor (CBF) from Catharanthus roseus (L). G. Don. Plant Cell Rep. 26, 1869–1878.PubMedCrossRefGoogle Scholar
  16. F.A.O. 2004 FAO production yearbook. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  17. Fowler S. and Thomashow F. 2002 Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675–1690.PubMedCrossRefGoogle Scholar
  18. Gao F., Chen J. M., Xiong A. S., Peng R. H., Liu J. G., Cai B. and Yao Q. H. 2009 Isolation and characterization of a novel AP2/EREBP-type transcription factor OsAP211 in Oryza sativa. Biol. Plant. 53, 643–649.CrossRefGoogle Scholar
  19. Gilmour S. J., Sebolt A. M., Salazar M. P., Everard J. D. and Thomashow M. F. 2000 Over-expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854–1865.PubMedCrossRefGoogle Scholar
  20. Gilmour S. J., Zarka D. G., Stockinger E. J., Salazar M. P., Houghton J. M. and Thomashow M. F. 1998 Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16, 433–442.PubMedCrossRefGoogle Scholar
  21. Gutha L. R. and Reddy A. R. 2008 Rice DREB1B promoter shows distinct stress-specific responses, and the over-expression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol. Biol. 68, 533–555.PubMedCrossRefGoogle Scholar
  22. Heidarvand L. and Amiri R. M. 2010 What happens in plant molecular responses to cold stress. Acta Physiol. Plant 32, 419–431.CrossRefGoogle Scholar
  23. Hsieh T. H., Lee J. T., Charng Y. Y. and Chan M. T. 2002a Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130, 618–626.PubMedCrossRefGoogle Scholar
  24. Hsieh T. S., Lee J. T., Yang P. T., Chiu L. H., Chang Y. Y., Wang Y. C. and Chan M. T. 2002b Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129, 1086–1094.PubMedCrossRefGoogle Scholar
  25. Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M. et al. 2006 Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant. Cell. Physiol. 47, 141–153.PubMedCrossRefGoogle Scholar
  26. Jaglo K. R., Kleff S., Amundsen K. L., Zhang X., Haake V., Zhang J. Z. et al. 2001 Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127, 910–917.PubMedCrossRefGoogle Scholar
  27. Jaglo-Ottosen K. R., Gilmour S. J., Zarka D. G., Schabenberger O. and Thomashow M. F. 1998 Arabidopsis CBF1 over-expression induces COR genes and enhances freezing tolerance. Science 280, 104–106.PubMedCrossRefGoogle Scholar
  28. James V. A., Neibaur I. and Altpeter F. 2008 Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res. 17, 93–104.PubMedCrossRefGoogle Scholar
  29. Jiang F., Wang F., Wu Z., Li Y., Shi G., Hu J. and Hou X. 2011 Components of the Arabidopsis CBF cold-response pathway are conserved in non-heading chinese cabbage. Plant Mol. Biol. Rep. 29, 525–532.CrossRefGoogle Scholar
  30. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K. 1999 Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat. Biotechnol. 17, 287–291.PubMedCrossRefGoogle Scholar
  31. Lata C. and Prasad M. 2011 Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62, 4731–4748.PubMedCrossRefGoogle Scholar
  32. Lee H., Xiong L., Gong Z., Ishitani M., Stevenson B. and Zhu J. K. 2001 The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 15, 912–924.PubMedCrossRefGoogle Scholar
  33. Li X., Cheng X., Liu J., Zeng H., Han L. and Tang W. 2011 Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol. Rep. 5, 61–69.CrossRefGoogle Scholar
  34. Liu L., Cao X. L., Bai R., Yao N., Li L. B. and He C. F. 2012 Isolation and characterization of the cold-induced Phyllostachys edulis AP2/ERF family transcription factor, peDREB1. Plant Mol. Biol. Rep. 30, 679–689.CrossRefGoogle Scholar
  35. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Goda H. et al. 1998 Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 10, 391–406.Google Scholar
  36. Liu Y., Zhao T. J., Liu J. M., Liu W. Q., Liu Q., Yan Y. B. and Zhou H. M. 2006 The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS. Lett. 580, 1303–1308.PubMedCrossRefGoogle Scholar
  37. Magnani E., Sjolander K. and Hake S. 2004 From endonuclease to transcription factors: Evolution of the AP2 DNA binding domain in plants. Plant Cell. 16, 2265–2277.PubMedCrossRefGoogle Scholar
  38. Magome H., Yamaguchi S., Hanada A., Kamiya Y. J. and Oda K. 2008 The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 56, 613–626.PubMedCrossRefGoogle Scholar
  39. Nakano T., Suzuki K., Fujimura T. and Shinshi H. 2006 Genome wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140, 411–432.PubMedCrossRefGoogle Scholar
  40. Nakashima K. and Yamaguchi-Shinozaki K. 2010 Promoters and transcription factors in abiotic-stress responsive gene expression. In Abiotic stress adaptation in plants (ed. A. Pareek, S. K. Sopory, H. J. Bohnert and Govindjee), pp. 199–216. Physiological, Molecular and Genomic Foundation, Springer, The Netherlands.Google Scholar
  41. Nakashima K, Shinwari Z. K., Sakuma Y., Seki M., Miura S., Shinozaki K. and Yamaguchi-Shinozaki K. 2000 Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression. Plant Mol. Biol. 42, 657–665.PubMedCrossRefGoogle Scholar
  42. Nakashima K., Ito Y. and Yamaguchi-Shinozaki K. 2009 Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88–95.PubMedCrossRefGoogle Scholar
  43. Navarro M., Marque G., Ayax C., Keller G., Borges J. P., Marque C. and Teulieres C. 2009 Complementary regulation of four eucalyptus CBF genes under various cold conditions. J. Exp. Bot. 60, 2713–2724.PubMedCrossRefGoogle Scholar
  44. Novillo F., Alonso J. M., Ecker J. R. and Salinas J. 2004 CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 3985– 3990.PubMedCrossRefGoogle Scholar
  45. Okamuro J. K., Caster B., Villarroel R., Van Montagu M. and Jofuku K. D. 1997 The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA 94, 7076–7081.PubMedCrossRefGoogle Scholar
  46. Puhakainen T., Li C., Boije-Malm M., Kangasjärvi J., Heino P. and Palva E. T. 2004 Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiol. 136, 4299–4307.PubMedCrossRefGoogle Scholar
  47. Qin F., Sakuma Y., Li J., Liu Q., Li Y. Q., Shinozaki K. and Yamaguchi-Shinozaki K. 2004 Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 45, 1042–1052.PubMedCrossRefGoogle Scholar
  48. Qin Q., Liu J., Zhang Z., Peng R., Xiong A., Yao Q. and Chen J. 2007 Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L. Mol. Breed. 19, 329–340.CrossRefGoogle Scholar
  49. Riechmann J. L. and Meyerowitz E. M. 1998 The AP2/EREBP family of plant transcription factors. Biol. Chem. 379, 633–646.PubMedGoogle Scholar
  50. Riechmann J. L., Heard J., Martin G., Reuber L., Jiang C., Keddie J. et al. 2000 Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110.PubMedCrossRefGoogle Scholar
  51. Sakuma Y., Liu Q., Dubouzet, J. G., Abe H., Shinozaki K. and Yamaguchi-Shinozaki K. 2002 DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998–1009.PubMedCrossRefGoogle Scholar
  52. Shen Y. G., Zhang W. K., Yan D. Q., Du B. X., Zhang J. S., Liu Q. and Chen S. Y. 2003 Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor. Appl. Genet. 107, 155–161.PubMedGoogle Scholar
  53. Shinozaki K. and Yamaguchi-Shinozaki K. 2007 Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221–227.PubMedCrossRefGoogle Scholar
  54. Shinozaki K. and Yamaguchi-Shinozaki K. 2000 Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217–223.PubMedGoogle Scholar
  55. Stockinger E. J., Gilmour S. J. and Thomashow M. F. 1997 Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035–1040.PubMedCrossRefGoogle Scholar
  56. Thomashow M. F. 1999 Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571–599.PubMedCrossRefGoogle Scholar
  57. Thomashow M. F. 2001 So what’s new in the field of plant cold acclimation? Plant Physiol. 125, 89–93.PubMedCrossRefGoogle Scholar
  58. Tong Z., Hong B., Yang Y., Li Q., Ma N., Ma C. and Gao J. 2009 Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol. Biol. 71, 115–129.PubMedCrossRefGoogle Scholar
  59. Umezawa T., Fujita M., Fujita Y., Yamaguchi-Shinozaki K. and Shinozaki K. 2006 Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17, 113–122.PubMedCrossRefGoogle Scholar
  60. Van Buskirk H. A. and Thomashow M. F. 2006 Arabidopsis transcription factors regulating cold acclimation. Physiol. Plant 126, 72–80.CrossRefGoogle Scholar
  61. Wang H. L., Tao J. J., He L. G., Zhao Y. J., Xu M., Liu D. C. and Sun Z. H. 2009 cDNA cloning and expression analysis of a Poncirus trifoliata CBF gene. Physiol. Plant. 53, 625–630.Google Scholar
  62. Wang Q., Guan Y., Wu Y., Chen H., Chen F. and Chu C. 2008 Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol. 67, 589–602.PubMedCrossRefGoogle Scholar
  63. Wang Q. J., Xu K. Y., Tong Z. G., Wang S. H., Gao Z. H., Zhang J. Y. et al. 2010 Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell Tiss. Organ Cult. 101, 211–219.CrossRefGoogle Scholar
  64. Wang W., Vinocur B. and Altman A. 2003 Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.PubMedCrossRefGoogle Scholar
  65. Wang Y. M. and He C. F. 2007 Isolation and characterization of cold-induced DREB gene from Aloe vera L. Plant Mol. Biol. Rep. 25, 121–132.CrossRefGoogle Scholar
  66. Welling A. and Palva T. 2008 Involvement of CBF transcription factors in winter hardiness in Birch. Plant Physiol. 147, 1199–1211.PubMedCrossRefGoogle Scholar
  67. Xiao H., Siddiqua M., Braybrook S. and Nassuth A. 2006 Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ. 29, 1410–1421.PubMedCrossRefGoogle Scholar
  68. Xiao H., Tattersall E. A. R., Siddiqua M. K., Cramer G. and Nassuth A. 2008 CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ. 31, 1–10.PubMedGoogle Scholar
  69. Xiong Y. and Fei S. Z. 2006 Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224, 878–888.PubMedCrossRefGoogle Scholar
  70. Xu Z. S., Chen M., Li L. C. and Ma Y. Z. 2008 Functions of the ERF transcription factor family in plants. Botany 865, 969–977.CrossRefGoogle Scholar
  71. Yang W., Liu X. D., Chi X. J., Wu C. A., Li Y. Z., Song L. L. et al. 2011 Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233, 219–229.PubMedCrossRefGoogle Scholar
  72. Zhang S., Li N., Gao F., Yang A. and Zhang J. 2010 Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol. Breed. 26, 455–465.CrossRefGoogle Scholar
  73. Zhang X., Fowler S. G., Cheng H., Lou Y., Rhee S. Y., Stockinger E. J. and Thomashow M. F. 2004 Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 39, 905–919.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  • M. AKHTAR
    • 1
    • 3
  • A. JAISWAL
    • 1
  • G. TAJ
    • 2
  • J. P. JAISWAL
    • 1
  • M. I. QURESHI
    • 3
  • N. K. SINGH
    • 1
  1. 1.Department of Genetics and Plant BreedingGovind Ballabh Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.Department of Molecular Biology and BiotechnologyGovind Ballabh Pant University of Agriculture and TechnologyPantnagarIndia
  3. 3.Department of BiotechnologyFaculty of Natural Sciences Jamia Millia IslamiaNew DelhiIndia

Personalised recommendations