Skip to main content
Log in

Hypermutation and stress adaptation in bacteria

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the ‘fittest’ mutation gets fixed ultimately while the others are lost. This has been called ‘clonal interference’ which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host–pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson D. I. and Hughes D. 2009 Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195.

    PubMed  CAS  Google Scholar 

  • Andersson D., Hughes D. and Roth J. 2009 The origin of mutants under selection : interaction of mutation, growth and selection. In Escherichia coli and Salmmonella, cellular and molecular biology (ed. A. Bock, R. Curtiss III, J. B. Kaper, P. D. Karp, F. C. Neidhardt, T. Nystrom, J. M. Slauch and C. L. Squires). ASM Press, Washinton DC, USA.

    Google Scholar 

  • Andre J. B. and Godelle B. 2006 The evolution of mutation rate in finite asexual populations. Genetics 172, 611–626.

    PubMed  CAS  Google Scholar 

  • Baer C. F., Miyamoto M. M. and Denver D. R. 2010 Mutation rate variation in mulicelluar eukaryotes: causes and consequences. Nat. Rev. Genet. 8, 619–631.

    Google Scholar 

  • Barrick J. E., Yu D. S., Yoon S. H., Yoon H. O., Jeong H., Oh T. K. et al. 2009 Genome evolution and adaptaton in a long term experiment with Escherichia coli. Nature 461, 1243–1247.

    PubMed  CAS  Google Scholar 

  • Bayliss C. D. and Moxon R. E. 2002 Hypermutation and adaptation. ASM News 68, 549–555.

    Google Scholar 

  • Besier S., Smaczny C., von Mallincrodt C., Krahl A., Ackermann H., Brade V. and Wichelhaus T. A. 2007 Prevalence and clinical significance of Staphylococcus aureus small colony variants in cystic fibrosis lung disease. J. Clin. Microbiol. 45, 168–172.

    PubMed  CAS  Google Scholar 

  • Besier S., Zander J., Kahl B. C., Kraizy P., Brade V. and Wichelhaus T. A. 2008 The thymidine-dependent small-colony-variant phenotype is associated with hypermutability and antibiotic resistance clinical Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 52, 2183–2189.

    PubMed  CAS  Google Scholar 

  • Bjedov I., Tenaillon O., Gerard B., Souza V., Denamur E., Radman M. et al. 2003 Stress induced mutagenesis in bacteria. Science 300, 1400–1409.

    Google Scholar 

  • Blazquez J. 2003 Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clin. Inf. Dis. 37, 1201–1209.

    CAS  Google Scholar 

  • Blount Z. D., Borland C. Z. and Lenski R. E. 2008 Historical contingency and evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl. Acad. Sci. USA 105, 7899–7906.

    PubMed  CAS  Google Scholar 

  • Boe L., Danielsen M., Knudsen S., Petersen J. B., Maymann J. B. and Jensen P. R. 2000 The frequency of mutations in populations of Escherichia coli. Mutat. Res. 448, 47–55.

    PubMed  CAS  Google Scholar 

  • Brock T. D. 1990 The emergence of bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Cairns J., Overbaugh J. and Miller S. 1988 The origin of mutants. Nature 335, 142–145.

    PubMed  CAS  Google Scholar 

  • Chao L. and Cox E. C. 1983 Competition between high and low mutating strains of Escherichia coli. Evolution 37, 125–134.

    Google Scholar 

  • Chopra I., O’ Neil A. J. and Miller K. 2003 The role of mutators in the emergence of antibiotic resistant bacteria. Drug Resist. Updates 6, 137–145.

    CAS  Google Scholar 

  • Ciofu O., Mandsberg L. F., Bjainshot T., Wassermann T. and Hoiby N. 2010 Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 156, 5108–5119.

    Google Scholar 

  • Cohen S. E. and Walker G. C. 2010 The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli. Curr. Biol. 20, 80–85.

    PubMed  CAS  Google Scholar 

  • Cohen S. E., Godoy V. J. and Walker G. C. 2009 Transcriptional modulator NusA interacts with translesion DNA poymerases in Escherichia coli. J. Bacteriol. 191, 665–672.

    PubMed  CAS  Google Scholar 

  • Cooper V. S. and Lenski R. E. 2000 The population genetics of ecological specialization in evolving Escherichia coli. Nature 407, 736–739.

    PubMed  CAS  Google Scholar 

  • Denamur E. and Matic I. 2006 Evolution of mutation rates in bacteria. Mol. Microbiol. 60, 820–827.

    PubMed  CAS  Google Scholar 

  • Desai M. M. and Fisher D. S. 2007 Beneficial mutation- selection balance and the effect of linkage on positive selection. Genetics 176, 1759–1798.

    PubMed  Google Scholar 

  • Desai M. M., Fisher D. S. and Murray A. W. 2007 The speed of evolution and maitenance of variation in asexual populations. Curr. Biol. 17, 385–394.

    PubMed  CAS  Google Scholar 

  • de Visser J. A. G. M. 2002 The fate of microbial mutators. Microbiology 148, 1247–1252.

    PubMed  Google Scholar 

  • de Visser J. A. G. M. and Rozen D. E. 2006 Clonal interference and periodic selection of new beneficial mutations in Escherichia coli. Genetics 172, 2093–2100.

    PubMed  Google Scholar 

  • de Visser J. A. G. M., Zeyl C. W., Gerrish P., Blanchard J. L. and Lenski R. E. 1999 Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406.

    PubMed  Google Scholar 

  • Drake J. W., Charlesworth B., Charlesworth D. and Crow J. F. 1998 Rates of spontaneous mutations. Genetics 48, 1667–1686.

    Google Scholar 

  • Driffield K., Miller K., Bostock J. M., O’Neil A. J. and Chopra I. 2008 Increased mutability of Pseudomonas aeruginosa in biofilms. J. Antimicrob. Chemother 61, 1053–1056.

    PubMed  CAS  Google Scholar 

  • Elena S. F. and Lenski R. E. 2003 Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469.

    PubMed  CAS  Google Scholar 

  • Fogle C. A., Nagie J. L. and Desai M. M. 2008 Clonal interference, multiple mutations and adaptation in large asexual populations. Genetics 180, 2163–2178.

    PubMed  Google Scholar 

  • Foster P. L. 1997 Non-adaptive mutations occur onthe F’ episome during adaptive mutation conditions in Escherichia coli. J. Bacteriol. 179, 1550–1554.

    PubMed  CAS  Google Scholar 

  • Foster P. L. 1999 Mechanisms of stationary phase mutations: a decade of adaptive mutation. Annu. Rev. Genet. 33, 57–88.

    PubMed  CAS  Google Scholar 

  • Foster P. l. 2007 Stress induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42, 373–397.

    PubMed  CAS  Google Scholar 

  • Frisch R. L., Thomton P. C., Gibson J. L., Rosenberg S. M. and Hastings P. J. 2010 Separate DNA Pol II- and Pol IV-dependent pathways of stress induced mutationsduring double strand break repair in Escherichia coli are controlled by RpoS. J. Bacteriol. 192, 4694–4700.

    PubMed  CAS  Google Scholar 

  • Funchain P., Yeung A., Lee J., Lin R., Slupska M. M. and Miller J. H. 2000 The consequences of growth of a mutator Strain of Escherichia coli by loss of function among multiple gene targets and loss of fitness. J. Bacteriol. 154, 959–970.

    CAS  Google Scholar 

  • Funchain P., Yeung A., Stewart J., Clandenin W. M. and Miller J. H. 2001 Amplification of mutator cells in a population. J. Bacteriol. 187, 3737–3741.

    Google Scholar 

  • Galhardo R. S., Hastings P. J. and Rosenberg S. M. 2007 Mutation as a stress response and regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 42, 399–435.

    PubMed  CAS  Google Scholar 

  • Galhardo R. S., Do R., Yamada M., Friedberg E. C., Hastings P. J., Nohmi T. and Rosenberg S. M. 2009. DinB up regulation is the sole role of the SOS response in stress-induced mutagenesis in Escherichia coli. Genetics 182, 55–68.

    PubMed  CAS  Google Scholar 

  • Gerrish P. and Lenski R. E. 1998 The fate of competing beneficial mutations in an asexual population. Genetica 102/103, 127–144.

    Google Scholar 

  • Gerrish P. J., Coloto A., Perelson A. S. and Sniegowski P. D. 2007 Complete genetic linkage can subvert natural selection. Proc. Natl. Acad. Sci. USA 104, 6266–6271.

    PubMed  CAS  Google Scholar 

  • Gibson J. L., Lombardo M., Thomton P. C., Hu K. H., Gaalhardo R. S., Beadle B. et al. 2010 The σ E stress reponse is required stress induced mutation and amplification in Escherichia coli. Mol. Microbiol. 72, 415–430.

    Google Scholar 

  • Giraud A., Matic M., Tenaillon O., Clara A., Radman M., Fons M. and Taddie F. 2001a Costs and benefits of high mutation retes: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608.

    PubMed  CAS  Google Scholar 

  • Giraud A., Radman M., Matic I. and Taddie F. 2001b The rise and fall of mutator bacteria. Curr. Opin. Microbiol. 4, 582–585.

    PubMed  CAS  Google Scholar 

  • Giraud A., Matic I., Radman M., Fons M. and Taddie F. 2002 Mutator bacteria as a risk factor in the treatment of infectious diseases. Antimicrob. Agents Chemother. 46, 863–865.

    PubMed  CAS  Google Scholar 

  • Gonzalez C., Hadany L., Ponder R. C., Price M., Hastings P. J. and Rosenberg S. M. 2007 Mutabilty and importance of a hypermutable cell sub-population that produces stress induced mutations in Escherichia coli. PLoS. Genet. 4, e1000208 (doi:10.1371/journal.pgen.1000208).

    Google Scholar 

  • Gutierrez O., Juan C., Perez J. L. and Oliver A. 2004 Lack of association between hypermutation and antibiotic resistant development in Pseudomonas aeruginosa isolates from intensive care unit patients. Antimicrob. Agents Chemother. 48, 3573–3575.

    PubMed  CAS  Google Scholar 

  • Harrison F. 2007 Microbial ecology of the cystic fibrosis lung. Microbiology 153, 917–923.

    PubMed  CAS  Google Scholar 

  • Hastings P. J. 2007 Adaptive amplification. Crit. Rev. Biochem. Mol. Biol. 42, 271–283.

    PubMed  CAS  Google Scholar 

  • Hogardt M., Hoboth C., Scmoldt S., Henke C., Bader L. and Heesemann J. 2007 Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis. J. Inf. Dis. 195, 70–80.

    CAS  Google Scholar 

  • Imhoff M. and Schlotterer C. 2001 Fitness effects of advantageous mutations in evolving Escherichia coli populations. Nature 381, 694–696.

    Google Scholar 

  • Itoh T., Martin W. and Nei M. 2002 Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. Proc. Natl. Acad. Sci. USA 99, 12944–12948.

    PubMed  CAS  Google Scholar 

  • Jayaraman R. 2000 Modulation of allele leakiness and adaptive mutability in Escherichia coli. J. Genet. 79, 55–60.

    CAS  Google Scholar 

  • Jayaraman R. 2009 Mutators and hypermutability in bactera: the Escherichia coli paradigm. J. Genet. 88, 379–391.

    PubMed  CAS  Google Scholar 

  • Jayaraman R. 2011 Phase variation and adaptation in bacteria: A “Red Queen’s Race”. Curr. Sci. 100, 1163–1171.

    CAS  Google Scholar 

  • Kang J. M., Iovine N. M. and Blaser M. J. 2006 A paradigm for direct stress-induced mutation in prokaryotes. FASEB J. 20, 2476–2485.

    PubMed  CAS  Google Scholar 

  • Kibota T. T. and Lynch M. 1996 Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 331, 694–696.

    Google Scholar 

  • Labat F., Pradillon O., Gary L., Peuchmaur M., Fantin B. and Denamur E. 2005 Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection. FEMS. Immunol. Med. Microbiol. 44, 317–321.

    PubMed  CAS  Google Scholar 

  • Le Chat L., Fons M. and Taddie F. 2006 Escherichia coli mutators: selection criteria and migration effect. Microbiology 152, 67–73.

    PubMed  Google Scholar 

  • Lenski R. E. 2011 Evolution in action: a 50,000 generation salute to Charles Darwin. Microbe 6, 30–33.

    Google Scholar 

  • Lenski R. E., Mongold J. A., Sneigowski P. D., Travisano M., Vasi F., Gerrish P. J. and Schmidt T. M. 1998 Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another. Antonie van Leuwenhoek 73, 35–47.

    CAS  Google Scholar 

  • Lindgren L. and Andersson D. I. 2009 Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nature Rev. Microbiol. 7, 578–588.

    Google Scholar 

  • Macia D., Blanquer D., Togores B., Sauleda J., Perez J. L. and Oliver A. 2005 Hypermutation is a key factor in development of multiple antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob. Agents Chemother. 49, 3382–3386.

    PubMed  CAS  Google Scholar 

  • Mao E. F., Lane L., Lee J. and Miller J. H. 1997 Proliferation of mutants in a population. J. Bacteriol. 179, 417–422.

    PubMed  CAS  Google Scholar 

  • Marcobal A. M., Sela D. A., Wolf Y. I., Makarova K. S. and Mills D. A. 2008 Role of hypermutability in the evolution of the genus Oenococcus. J. Bacteriol. 190, 564–570.

    PubMed  CAS  Google Scholar 

  • Marias G. A. B., Calteau A. and Tenaillon O. 2008 Mutation rate and genome reduction in endosymbiotic and freeliving bacteria. Genetica 134, 205–210.

    Google Scholar 

  • Mena A., Macia M. D., Borrell N., Moya B., de Fransisco T. et al. 2007 Inactivation of the mismatch repair system in Pseudomonas aeruginosa attenuates virulence but favours persistence of oropharyngeal colonization in cystic fibrosis mice. J. Bacteriol. 190, 3665–3668.

    Google Scholar 

  • Mena A., Smith E. E., Burns J. L., Speert D. P., Perez J. L. and Oliver A. 2008 Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalysed by hypermutation. J. Bacteriol. 190, 7910–7917.

    PubMed  CAS  Google Scholar 

  • Miller J. H., Suthar A., Tau J., Yeung A., Truong C. and Stewart J. E. 1999 Direct selection for mutators in Escherichia coli. J. Bacteriol. 181, 1576–1584.

    PubMed  CAS  Google Scholar 

  • Miller K., O’ Neil A. J. and Chopra I. 2004 Escherichia coli mutators present an enhanced risk of the emergence of antibiotic resistance during urinary tract infections. Antimicrob. Agents Chemother. 48, 23–29.

    PubMed  CAS  Google Scholar 

  • Oliver A. 2005 Hypermutation in natural bacterial populations: consequences for medical microbiology. Rev. Med. Microbiol. 16, 1–25.

    Google Scholar 

  • Oliver A. 2010 Mutators in cystic fibrosis chronic lung infection: prevalence, mechanisms, and consequences for antimicrobial therapy. Int. J. Med. Microbiol. 300, 563–572.

    PubMed  CAS  Google Scholar 

  • Oliver A. and Mena A. 2010 Bacterial hypermutation in cystic fibrosis: not only for antibiotic resistance. Clin. Microbiol. Infect. 16, 798–808.

    PubMed  CAS  Google Scholar 

  • Orlen H. and Hughes D. 2006 Weak mutators can drive the evolution of fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 50, 3454–3456.

    PubMed  Google Scholar 

  • Perron G. G., Hall A. R. and Buckling A. 2010 Hypermutability and compensatory adaptation in antibiotic resistant bacteria. Am. Naturalist. 176, 303–311.

    Google Scholar 

  • Petrosino J. F., Galhardo R. S., Morales L. D. and Rosenberg S. M. 2009 Stress-induced β-lactam resistance mutation and sequences of stationary phase mutations in Escherichia coli. J. Bacteriol. 191, 5881–5889.

    PubMed  CAS  Google Scholar 

  • Philippe N., Pelosi L., Lenski R. E. and Schneider D. 2009 Evolution of penicillin - binding protein 2 concentration and cell shape in a long term experiment with Escherichia coli. J. Bacteriol. 191, 909–921.

    PubMed  CAS  Google Scholar 

  • Pranting M. and Andersson D. I. 2011 Escape from growth restriction in small colony variants of Salmonella typhimurium by gene amplification and mutation. Mol. Microbiol. 79, 305–315.

    PubMed  Google Scholar 

  • Prince A. S. 2002 Biofilms, antimicrobial resistance, and airway infection. N. Engl. J. Med. 347, 1110–1111.

    PubMed  Google Scholar 

  • Radman M., Matic I. and Taddie F. 1999 Evolution of evolvability. Ann. N. Y. Acad. Sci. 870, 146–155.

    PubMed  CAS  Google Scholar 

  • Rayssiguier C., Thaler D. and Radman M. 1989 The barrier to recombination between Escherichia coli and Salmonella typhimurium is dirupted in mismatch repair mutants. Nature 342, 396–401.

    PubMed  CAS  Google Scholar 

  • Roth, J. 2010 Genetic adaptation: a new piece for a very old puzzle. Curr. Biol. 20, R15–R17.

    Google Scholar 

  • Roth J. 2011 The joys and terrors of fast adaptation: new findings elucidate antibiotic resistance and natural selection. Mol. Microbiol. 79, 279–282.

    PubMed  CAS  Google Scholar 

  • Roth J. R., Kugelberg E., Reams A. B., Kofoid E. and Anderson D. I. 2006 Origin of mutations under selection: the adaptive mutation controversy. Annu. Rev. Microbiol. 60, 477–501.

    PubMed  CAS  Google Scholar 

  • Shaver A. C., Donbrowski P. G., Sweeney J. Y., Tries T., Zappala R. M. and Snieggowski P. D. 2002 Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations. Genetics 162, 557–566.

    PubMed  CAS  Google Scholar 

  • Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R. , D’ Argenio D. A. et al. 2006 Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103, 8487–8492.

    PubMed  CAS  Google Scholar 

  • Sniegowski P. D. and Gerrish P. J. 2010 Beneficial mutations and the dynamics of adaptaion in asexual populations. Phil. Trans. R. Soc. B. 365, 1255–1263.

    PubMed  Google Scholar 

  • Sniegowski P. D., Gerrish P. J. and Lenski R. E. 1997 Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705.

    PubMed  CAS  Google Scholar 

  • Sniegowski P. D., Gerrish P. J., Johnson T. and Shaver A. 2000 The evolution of mutation rates: separating causes from consequences. Bio Essays 22, 1057–1066.

    CAS  Google Scholar 

  • Stanek M. T., Cooper T. F. and Lenski R. E. 2009 Identification and dynamics of a beneficial mutation in a long term evolution experiment with Escherichia coli. BMC Evol. Biol. 9, 302.

    PubMed  Google Scholar 

  • Storvik K. A. M. and Foster P. L. 2010 RpoS, the stress response sigma factor plays a dual role in the regulation of error prone DNA Pol IV. J. Bacteriol. 192, 3639–3644.

    PubMed  CAS  Google Scholar 

  • Sturtuvant A. H. 1937 Essays on evolution. I. On the effects of selection on mutation rates. Quart. Rev. Biol. 12, 464–467.

    Google Scholar 

  • Sun S., Berg O. G., Roth J. R. and Andersson D. I. 2009 Contribution of gene amplifiction to evolution of increased antibiotic resistance in Salmmonella typhimurium. Genetics 182, 1183–1195.

    PubMed  CAS  Google Scholar 

  • Taddie F., Matic I., Godelle B. and Radman M. 1997a To be a mutator or how pathogenic and commensal bacteria can evolve rapidly. Trends Microbiol. 5, 427–428.

    Google Scholar 

  • Taddie F., Radman M., Maynard-Smitth J., Toupance B., Gouyon P. H. and Godelle B. 1997b Role of mutator alleles in adaptive evolution. Nature 387, 700–702.

    Google Scholar 

  • Taddie F., Halliday J. A., Matic I. and Radman M. 1997c Genetic analysis of mutagenesis in aging Escherichia coli colonies. Mol. Gen. Genet. 256, 277–281.

    Google Scholar 

  • Tanaka M. M., Bergstrom C. T. and Levin B. R. 2003 The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics 164, 843–854.

    PubMed  Google Scholar 

  • Tenaillon O., Toupance B., Le Nagard H., Taddie F. and Godelle B. 1997 Mutations, population size, adaptive landscape and the adaptation of asexual populations. Genetics 152, 485–493.

    Google Scholar 

  • Tenaillon O., Le Nagard H., Godelle B. and Taddie F. 2000 Mutators and sex in bacteria: conflict between adaptive strategies. Proc. Natl. Acad. Sci. USA 1997, 10465–10470.

    Google Scholar 

  • Tenaillon O., Taddie F., Radman M. and Matic I. 2001 Second order selection in bacterial evolution: selection acting on mutation and recombination rates in the course of adaptation. Res. Microbiol. 152, 11–16.

    PubMed  CAS  Google Scholar 

  • Torkelson J., Harris R. S., Lombardo M.-J., Nagendran J., Thulin C. and Rosenberg S. M. 1997 Genome-wide hypermutation in a sub-population of stationary phase cells underlies recombination-dependent adaptive mutation. EMBO J. 16, 3303–3311.

    PubMed  CAS  Google Scholar 

  • Weigand I., Marr A. K., Briedenstein E. B., Schuerek K. N., Taylor P. and Hancock R. E. 2008 Mutator genes giving rise to decreased antibiotic susceptibility in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 52, 3810–3813.

    Google Scholar 

  • Woodford N. and Ellington M. J. 2007 The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 13, 5–18.

    PubMed  CAS  Google Scholar 

  • Wrande M., Roth J. R. and Hughes D. 2008 Accumulation of mutations in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc. Natl. Acad. Sci. USA 105, 11863–11868.

    PubMed  CAS  Google Scholar 

  • Wright B. E. 2004 Stress directed mutations and evolution. Mol. Microbiol. 52, 643–650.

    PubMed  CAS  Google Scholar 

  • Zeyl C. 2007 Evolutioary genetics: a piggyback ride to adaptation and diversity. Curr. Biol. 17, R333–R335.

    Google Scholar 

  • Zhong L. and Aoquan W. 2001 A new experimental system for study on adaptive mutations. Sci. China (Series C). 44, 58–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. JAYARAMAN.

Additional information

Jayaraman R. 2011 Hypermutation and stress adaptation in bacteria. J. Genet. 90, 383–391

Rights and permissions

Reprints and permissions

About this article

Cite this article

JAYARAMAN, R. Hypermutation and stress adaptation in bacteria. J Genet 90, 383–391 (2011). https://doi.org/10.1007/s12041-011-0086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-011-0086-6

Keywords

Navigation