Skip to main content
Log in

Analysis of embryo, cytoplasmic and maternal genetic correlations for seven essential amino acids in rapeseed meal (Brassica napus L.)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic correlations of nutrient quality traits including lysine, methionine, leucine, isoleucine, phenylalanine, valine and threonine contents in rapeseed meal were analysed by the genetic model for quantitative traits of diploid plants using a diallel design with nine parents of Brassica napus L. These results indicated that the genetic correlations of embryo, cytoplasm and/or maternal plant have made different contribution to total genetic correlations of most pairwise nutrient quality traits. The genetic correlations among the amino acids in rapeseed meal were simultaneously controlled by genetic main correlations and genotype × environment (GE) interaction correlations, especially for the maternal dominance correlations. Most components of genetic main correlations and GE interaction correlations for the pairwise traits studied were significantly positive. Some of the pairwise traits had negative genetic correlations, especially between valine and other amino acid contents. Indirect selection for improving the quality traits of rapeseed meal could be expected in rape breeding according to the magnitude and direction of genetic correlation components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Downey R. K. and Harvey B. L. 1963 Methods of breeding for oil quality in rape. Can. J. Plant Sci. 43, 271–275.

    Article  CAS  Google Scholar 

  • Downey R. K. and Craig B. M. 1964 Genetic control of fatty acid composition in rapeseed. J. Am. Oil Chem. Soc. 41, 457–478.

    Article  Google Scholar 

  • Fontaine J., Schirmer, B. and Hörr J. 2002 Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. J. Agric. Food Chem. 50, 3902–3911.

    Article  PubMed  CAS  Google Scholar 

  • Friedman M. 1996 Nutritional value of proteins from different food sources. J. Agric. Food Chem. 44, 6–29.

    Article  CAS  Google Scholar 

  • Getinet A., Rakow G. and Downey R. K. 1996 Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Can. J. Plant Sci. 76, 387–392.

    Article  Google Scholar 

  • Goding L. A., Downey R. K. and Finlayson A. J. 1972 Seed protein amino acid compositions resulting from crosses between two Brassica campestris cultivars. Can. J. Plant Sci. 52, 63–71.

    Article  CAS  Google Scholar 

  • Grami B. and Stefansson B. R. 1977a Gene action for protein and oil content in summer rape. Can. J. Plant Sci. 57, 625–631.

    Article  CAS  Google Scholar 

  • Grami B. and Stefansson B. R. 1977b Paternal and maternal effects on protein and oil content in summer rape. Can. J. Plant Sci. 57, 945–949.

    Article  CAS  Google Scholar 

  • Hu H. W. 1997 Twelve kinds of main characters and yield relationship (Brassica napus L.). Oil Crop China 19, 10–11.

    Google Scholar 

  • Huisman J. and Tolman G. H. 1990 Antinutritional factors in the plant proteins of diets for non-ruminants. In Recent advances in animal nutrition (ed. M. Haresign and D. J. A. Cole), pp. 3–31. Butterworth-Heinemann, Oxford, UK.

    Google Scholar 

  • Josefesson E. and Muhlenberg C. 1968 Glucosinolates in seed of Swedish crops. Acta Agric. Scand. 18, 97–100.

    Article  Google Scholar 

  • Krzymanski J. and Downey R. K. 1968 Inheritance of fatty acid composition in winter forms of rapeseed (Brassica napus). Can. J. Plant Sci. 49, 313–319.

    Article  Google Scholar 

  • Miller R. G. 1974 The Jackknife, a review. Biometrika 61, 1–15.

    Google Scholar 

  • Millward D. J. 2006 Oilseed rape protein in human nutrition. In Proceedings of the workshop oilseed rape for a healthier future, 30th September–1st October, Madrid, Spain (http://www.eurofedlipid.org/meetings/arcive/madrid/index.htm).

  • Möllers C. and Schierholt A. 2002 Genetic variation of palmitate and oil content in a winter oilseed rape doubled haploid population segregating for oleate content. Crop Sci. 42, 379–384.

    Article  Google Scholar 

  • Röbbelen G. 1981 Potential and restrictions of breeding for amino acid improvement in rapeseed. In Production and utilization of amino acid in oilseed crops (ed. E. S. Bunting), pp. 3–11. Martinus Nijhoff, The Netherlands.

    Chapter  Google Scholar 

  • Schierholt A. and Becker H. C. 2001 Environmental variability and heritability of high oleic acid content in winter oilseed rape (Brassica napus L.). Plant Breeding 120, 63–66.

    Article  CAS  Google Scholar 

  • Shenk J. S. and Westerhaus M. O. 1993 Analysis of agriculture and food products by near infrared reflectance spectroscopy. Infrasoft International, Port Matilda, USA.

    Google Scholar 

  • Shi C. H., Zhang H. Z., Wu J. G., Li C. T. and Ren Y. L. 2003 Genetic and genotype × environment interaction effects analysis for erucic acid content in rapeseed (Brassica napus L.). Euphytica 130, 249–254.

    Article  CAS  Google Scholar 

  • Shi C. H., Zhang H. Z. and Wu J. G. 2006 Analysis of embryo, cytoplasmic and maternal correlations for quality traits of rapeseed (Brassica napus L.) across environments. J. Genet. 85, 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Simbaya J., Alominski S. B., Rakow G. and Downey R. K. 1995 Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrates, and dietary fiber components. J. Agric. Food Chem. 43, 2062–2066.

    Article  CAS  Google Scholar 

  • Velasco L., Fernandez M. J. M., José M. F. M. and Antonio D. H. 1999 Intraspecific breeding for reduced glucosinolate content in Ethiopian mustard (Brassica carinata). Euphytica 106, 125– 130.

    Article  Google Scholar 

  • Wu G. Y. 2009 Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 1–17.

    Article  PubMed  Google Scholar 

  • Wu J. G., Shi C. H. and Zhang H. Z. 2005 Genetic analysis of embryo, cytoplasmic and maternal effects and their environment interactions for protein content in Brassica napus L. Aust. J. Agric. Res. 56, 69–73.

    Article  CAS  Google Scholar 

  • Yadava T. P., Gupta S. K., Thakral S. K. and Kumar P. 1983 Association of seed yield with some quality attributes of Indian mustard. Indian J. Agric. Sci. 53, 605–606.

    CAS  Google Scholar 

  • Zhang H. Z., Shi C. H., Wu J. G., Ren Y. L., Li C. T., Zhang D. Q. and Zhang Y. F. 2004a Analysis of genetic and genotype × environment interaction effects from embryo, cytoplasm and maternal plant for oleic acid content of Brassica napus L. Plant Sci. 167, 43–48.

    Article  CAS  Google Scholar 

  • Zhang H. Z., Shi C. H., Wu J. G., Ren Y. L., Li C. T., Zhang D. Q. and Zhang Y. F. 2004b Analysis of genetic effects and heritabilities for linoleic and α-linolenic acid content of Brassica napus L. across Chinese environments. Eur. J. Lipid Sci. Technol. 106, 518–523.

    Article  CAS  Google Scholar 

  • Zhang S. F., Song W. G., Ren L. J., Tian B. M., Wen Y. C., Liu J. M. and Wang J. P. 1996 Studies on hereditary capacity of quantitative traits and gene effects of CMS double low Brassica napus. Oil Crops China 18, 1–3.

    Google Scholar 

  • Zhu J. 1992 Mixed model approaches for estimating genetic variances and covariances. J. Biomath 7, 1–11.

    Google Scholar 

  • Zhu J. and Weir B. S. 1994 Analysis of cytoplasmic and maternal effects: I. A genetic model for diploid plant seeds and animals. Theor. Appl. Genet. 89, 153–159.

    Google Scholar 

  • Zhu J. and Weir B. S. 1996 Diallel analysis for sex-linked and maternal effects. Theor. Appl. Genet. 92, 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHUN HAI SHI.

Additional information

[Chen G. L., Wu J. G., Variath M.-T., Yang Z. W. and Shi C. H. 2011 Analysis of embryo, cytoplasmic and maternal genetic correlations for seven essential amino acids in rapeseed meal (Brassica napus L.). J. Genet. 90, 67–74]

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHEN, G.L., WU, J.G., VARIATH, MT. et al. Analysis of embryo, cytoplasmic and maternal genetic correlations for seven essential amino acids in rapeseed meal (Brassica napus L.). J Genet 90, 67–74 (2011). https://doi.org/10.1007/s12041-011-0040-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-011-0040-7

Keywords

Navigation