Skip to main content
Log in

Molecular characterization and functional analysis of elite genes in wheat and its related species

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The tribe Triticeae includes major cereal crops (bread wheat, durum wheat, triticale, barley and rye), as well as abundant forage and lawn grasses. Wheat and its wild related species possess numerous favourable genes for yield improvement, grain quality enhancement, biotic and abiotic stress resistance, and constitute a giant gene pool for wheat improvement. In recent years, significant progress on molecular characterization and functional analysis of elite genes in wheat and its related species have been achieved. In this paper, we review the cloned functional genes correlated with grain quality, biotic and abiotic stress resistance, photosystem and nutrition utilization in wheat and its related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altpeter F., Diaz I., McAuslane H., Gaddour K., Carbonero P. and Vasil I. K. 1999 Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol. Breeding 5, 53–63.

    Article  CAS  Google Scholar 

  • Alvarez M. L., Guelman S., Halford N. G., Lustig L., Reggiardo M. L., Ryabushkina N. et al. 2000 Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor. Appl. Genet. 100, 319–327.

    Article  CAS  Google Scholar 

  • Bae J. M., Giroux M. and Hannah L. C. 1990 Cloning and characterization of the brittle-2 gene of maize. Maydica 35, 317–322.

    Google Scholar 

  • Bahieldin A., Mahfouz H. T., Eissa H. F., Saleh O. M., Ramadan A. M., Ahmed I. A. et al. 2005 Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol. Plant. 123, 421–427.

    Article  CAS  Google Scholar 

  • Barro F., Rooke L., Bekes F., Gras P., Tatham A., Fido R. et al. 1997 Transformation of wheat with high molecular-weight subunit genes results in improved functional-properties. Nat. Biotechnol. 15, 1295–1299.

    Article  PubMed  CAS  Google Scholar 

  • Barro F., Barcelo P., Lazzeri P. A., Shewry P. R., Ballesteros J. and Martin A. 2002 Field evaluation and agronomic performance of transgenic wheat. Theor. Appl. Genet. 105, 980–984.

    Article  PubMed  CAS  Google Scholar 

  • Beecher B., Bettge A., Smidansky E. and Giroux M. J. 2002 Expression of wild-type Pinb sequence in transgenic wheat complements a hard phenotype. Theor. Appl. Genet. 105, 870–877.

    Article  PubMed  CAS  Google Scholar 

  • Bettge A. D., Morris C. F. and Greenblatt G. A. 1995 Assessing genotypic softness in single wheat kernels using starch granule-associated friabilin as a biochemical marker. Euphytica 86, 65–72.

    Article  CAS  Google Scholar 

  • Bhalla P. L., Ottenhof H. H., and Singh M. B. 2006 Wheat transformation—an update of recent progress. Euphytica 149, 353–366.

    Article  Google Scholar 

  • Bhave M. R., Lawrence S., Barton C. and Hannah L. C. 1990 Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2, 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Blake N. K., Sherman J. D., Dvořák J. and Talbert L. E. 2004 Genome-specific primer sets for starch biosynthesis genes in wheat. Theor. Appl. Genet. 109, 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  • Bliffeld M., Mundy J., Potrykus I. and Futtere J. 1999 Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98, 1079–1086.

    Article  CAS  Google Scholar 

  • Brini F., Hanin M., Lumbreras V., Irar S., Pages M. and Masmoudi K. 2007 Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf) varieties with marked differences in salt and drought tolerance. Plant Sci. 172, 20–28.

    Article  CAS  Google Scholar 

  • Brueggeman R., Rostoks N., Kudrna D., Kilian A., Han F., Chen J. et al. 2002 The barley stem rust resistance gene Rpg1 is a novel disease resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99, 9328–9333.

    Article  PubMed  CAS  Google Scholar 

  • Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A. et al. 1997 The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705.

    Article  PubMed  Google Scholar 

  • Cao S., Xu H., Li Z., Wang X., Wang D., Zhang A. et al. 2007 Identification and characterization of a novel Ag. intermedium HMW-GS gene from T. aestivum-Ag. intermedium addition lines TAI-I series J. Cereal Sci. 45, 293–301.

    Article  CAS  Google Scholar 

  • Chauvin L.-P., Houde M. and Sarhan F. 1993 A leaf-specific gene stimulated by light during wheat acclimation to low temperature. Plant Mol. Biol. 23, 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Chen S. Y., Xia G. M. and Chen H. M. 2000 Studies on NaCl-tolerant among somatic hybrid lines of wheat and Agropyron elongatum with their parents. Acta Bot. Bor. Occid. Sin. 20, 327–332 (in Chinese).

    CAS  Google Scholar 

  • Chen F., He Z. H., Chen D. S., Zhang C. L., Zhang Y. and Xia X. C. 2007 Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats. J. Cereal Sci. 45, 59–66.

    Article  CAS  Google Scholar 

  • Cloutier S., McCallum B. D., Loutre C., Banks T. W., Wicker T., Feuillet C. et al. 2007 Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol. 65, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Colmer T. D., Flowers T. J. and Munns R. 2006 Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57, 1059–1078. This reference is not cited in the text.

    Article  PubMed  CAS  Google Scholar 

  • Colmer T. D., Munns R. and Flowers T. J. 2005 Improving salt tolerance of wheat and barley: future prospects. Aust. J. Exp. Agr. 45, 1425–1443.

    Article  CAS  Google Scholar 

  • Curtis B. C., Rajaram S. and Macpherson H. G. (ed.) 2002 Bread wheat: improvement and production. FAO plant production and protection series no. 30. Food and Agriculture Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • De Bustos A. and Jouve N. 2003 Characterisation and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theor. Appl. Genet 107, 74–83.

    PubMed  Google Scholar 

  • Dong Y. S. 1981 The relatives of wheat crop. Germplasm Res. 1, 18–25.

    Google Scholar 

  • Drea S., Leader D. J., Arnold B. C., Shaw P., Dolan L. and Doonan J. H. 2005 Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 17, 2172–2185.

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C., Travella S., Stein N., Albar L., Nublat A. and Keller B. 2003 Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 100, 15253–15258.

    Article  PubMed  CAS  Google Scholar 

  • Friesen T. L., Stukenbrock E. H., Liu Z., Meinhardt S., Ling H., Faris J. D. et al. 2006 Emergence of a new disease as a result of interspecific virulence transfer. Nat. Genet. 38, 953–956.

    Article  PubMed  CAS  Google Scholar 

  • Fu D., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X. et al. 2009 A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357–1360.

    Article  PubMed  CAS  Google Scholar 

  • Ganeshan S., Vitamvas P., Fowler D. B. and Chibbar R. N. 2008 Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J. Exp. Bot. 59, 2393–2402.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite A. J., von Bothmer R. and Colmer T. D. 2003 Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct. Plant Bio. 30, 875–889.

    Article  Google Scholar 

  • Giovanini M. P., Saltzmann K. D., Puthoff D. P., Gonzalo M., Ohm H. W. and Williams C. E. 2007 A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol. Plant Pathol. 8, 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Guo S. D., Wu G. Y. and Wu X. Y. 1997 Rubisco activities and the small subunit gene cloning and functional analysis of Aegilops squarrosa. Acta Bot. Sin. 39, 222–230.

    Google Scholar 

  • Halterman D., Zhou F. S., Wei F., Wise R. P. and Schulze-Lefert P. 2001 The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 25, 335–348.

    Article  PubMed  CAS  Google Scholar 

  • Hannah L. C. 1997 Starch Synthesis in the maize endosperm. In Advances in cellular and molecular biology of plants (ed. B. A. Larkins and I. K. Vasil), pp. 375–405. Academic Publisher, Oulu, Finland.

    Google Scholar 

  • Hao Y. Q., Liu G. S., Wang L. J., Shi Z. and Wang Y. Q. 2007 Cloning and analysis of Leymus chinensis photosynthesis related genes. Acta Bot. Bor. Occid. Sin. 27, 898–902.

    CAS  Google Scholar 

  • Hogg A. C., Sripo T., Beecher B., Martin J. M. and Giroux M. J. 2004 Wheat puroindolines interact to form friabilin and control wheat grain hardness. Theor. Appl. Genet. 108, 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  • Hogg A. C., Beecher B., Martin J. M., Meyer F., Talbert L., Lanning S. and Giroux M. J. 2005 Hard wheat milling and baking traits affected by the seed-specific overexpression of puroindolines. Crop Sci. 45, 871–878.

    Article  CAS  Google Scholar 

  • Hong B., Barg R. and Ho T. D. 1992 Developmental and organspecific expression of an ABA and stress-induced protein in barley. Plant Mol. Biol. 18, 663–674.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao C., Chatterton N. J., Asay K. H. and Jensen K. B. 1995 Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poceae), inferred from nuclear rDNA (internal transcribed spaces) sequences. Genome, 38, 211–223.

    Article  PubMed  CAS  Google Scholar 

  • Huang L., Brooks S. A., Li W. L., Fellers J. P., Trick H. N. and Gill B. S. 2003 Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.

    PubMed  CAS  Google Scholar 

  • Huang S. B., Spielmeyer W., Lagudah E. S., James R. A., Platten J. D., Dennis E. S., and Munns R. 2006 A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 142, 1718–1727.

    Article  PubMed  CAS  Google Scholar 

  • Joshi C. P. and Nguyen H. T. 1996 Differential display-mediated rapid identification of different members of a multigene family, HSP16.9 in wheat. Plant Mol. Bio. 31, 575–584.

    Article  CAS  Google Scholar 

  • Kang R. J., Shi D. J. and Cong W. 2004 Regulation on photosynthetic efficiency of anabaena sp.PCC7120 by the co-expression of two higher plants genes ALD and TPI. Chin. J. Biotechnol. 20, 851–855.

    CAS  Google Scholar 

  • Khanna H. K. and Daggard G. E. 2006 Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures. Plant Cell Rep. 25, 1336–1346.

    Article  PubMed  CAS  Google Scholar 

  • Khatkar B. S., Fido R. J., Tatham A. S. and Schofield J. D. 2002a Functional properties of wheat gliadins. I. effects on mixing characteristics and bread making quality. J. Cereal Sci. 35, 299–306.

    Article  CAS  Google Scholar 

  • Khatkar B. S., Fido R. J., Tatham A. S. and Schofield J. D. 2002b Functional properties of wheat gliadins. II. effects on dynamic rheological properties of wheat gluten. J. Cereal Sci. 35, 307–313.

    Article  CAS  Google Scholar 

  • Laurie S., Feeney K. A., Maathuis F. J., Heard P. J., Brown S. J. and Leigh R. A. 2002 A role for HKT1 in sodium uptake by wheat roots. Plant J. 32, 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Leckband G. and Lorz H. 1998 Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96, 1004–1012.

    Article  CAS  Google Scholar 

  • Lemoine R. 2000 Sucrose transporters in plants update on function and structure. Biochem. Biophys. Acta 1465, 246–262.

    Article  PubMed  CAS  Google Scholar 

  • Li N., Zhao Y. J. and Zhang S. H. 2006 Research on barley HVA1 gene and Lea protein with plant drought tolerance. Biotech. Bull. 4, 25–29.

    Google Scholar 

  • Li Z., Rahman S., Kosar-Hashemi B., Mouille G., Appels R. and Morell M. K. 1999 Cloning and characterization of a gene encoding wheat starch synthase I. Theor. Appl. Genet. 98, 1208–1216.

    Article  CAS  Google Scholar 

  • Liu L. K., Guo X. L., Liu D. C., Wang H. B. and Zhang A. M. 2005 Molecular cloning and characterization of the TaLon1 in wheat. Acta Agro. Sin. 31, 1247–1252.

    CAS  Google Scholar 

  • Liu S. W., Zhao S. G., Chen F. G. and Xia G. M. 2007 Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum / Agropyron elongatum. BMC Evol. Biol. 7, 76.

    Article  PubMed  CAS  Google Scholar 

  • Liu X., Shi J., Zhang X. Y., Ma Y. S. and Jia J. Z. 2001 Screening salt tolerance germplasms and tagging the tolerance gene(s) using microsatellite (SSR) markers in wheat. Acta Bot. Sin. 43, 948–954.

    CAS  Google Scholar 

  • Liu Z., Yan Z., Wan Y., Liu K., Zheng Y. and Wang D. 2003 Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops speciecs. Theor. Appl. Genet. 106, 1368–1378.

    PubMed  CAS  Google Scholar 

  • Martin J. M., Frohberg R. C., Morris C. F., Talbert L. E. and Giroux M. J. 2001 Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 41, 228–234.

    Article  CAS  Google Scholar 

  • Martin J. M., Meyer F. D., Smidansky E. D., Wanjugi H., Blechl A. E. and Giroux M. J. 2006 Complementation of the Pina (Null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat. Theor. Appl. Genet. 113, 1563–1570.

    Article  PubMed  CAS  Google Scholar 

  • Martin J. M., Meyer F. D., Morris C. F. and Giroux M. J. 2007 Pilot scale milling characteristics of transgenic isolines of a hard wheat over-expressing puroindolines. Crop Sci. 47, 495–504.

    Article  Google Scholar 

  • Martin J. M., Beecher B. and Giroux M. J. 2008 White salted noodle characteristics from transgenic isolines of wheat over expressing puroindolines. J. Cereal. Sci. 48, 800–807.

    Article  CAS  Google Scholar 

  • Masci S., D’Ovidio R., Lafiandra D. and Kasarda D. D. 1998 Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol. 118, 1147–1158.

    Article  PubMed  CAS  Google Scholar 

  • Mesfin A., Frohberg R. C. and Anderson J. A. 1999 RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci. 39, 508–513.

    Article  CAS  Google Scholar 

  • Meyer F. D., Talbert L. E., Martin J. M., Lanning S. P., Greene T.W. and Giroux M. J. 2007 Field evaluation of transgenic wheat expressing a modified ADP-glucose pyrophosphorylase large subunit. Crop Sci. 47, 336–342.

    Article  CAS  Google Scholar 

  • Miller A. K., Galiba G. and Dubcovsky J. 2006 A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Mol. Gen. Genomics 275, 193–203.

    Article  CAS  Google Scholar 

  • Mitra J. 2001 Genetics and genetic improvement of drought resistance in crop plants. Curr. Sci. 80, 758–763.

    CAS  Google Scholar 

  • Morell M. K., Rahman S., Regina A., Appels R. and Li Z. 2001 Wheat starch biosynthesis. Euphytica 119, 55–58.

    Article  CAS  Google Scholar 

  • Murai J., Taira T. and Ohta D. 1999 Isolation and characterization of the three waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Morris C. F. 2002 Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 48, 633–647.

    Article  PubMed  CAS  Google Scholar 

  • Munns R. 2005 Genes and salt tolerance: bring them together. New Phytol. 143, 655–663.

    Google Scholar 

  • Nakashima K. and Yamaguchi-Shinozaki K. 2006 Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol. Plant 126, 62–71.

    Article  CAS  Google Scholar 

  • NDong C., Danyluk J., Wilson K. E., Pocock T., Huner N. P. A. and Sarhan F. 2002 Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol. 129, 1368–1381.

    Article  PubMed  CAS  Google Scholar 

  • Oldach K. H., Becker D. and Lorz H. 2001 Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol. Plant Microbe Interact. 14, 832–838.

    Article  PubMed  CAS  Google Scholar 

  • Patnaik D. and Khurana P. 2003 Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biol. 3, 5.

    Article  PubMed  Google Scholar 

  • Preiss J. 1997 Manipulation of starch synthesis. In A molecular approach to primary metabolism in plants (ed. W. P. Quick and C. H. Foyer), pp. 81–103. Taylor and Francis, London, UK.

    Google Scholar 

  • Preiss J. and Romeo T. 1994 Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 47, 299–329.

    Article  PubMed  CAS  Google Scholar 

  • Qiao W. H., Zhao X. Y., Li W., Luo Y. and Zhang X. S. 2007 Overexpression of AeNHX1, a root-specific vacuolar Na(+)/H (+) antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and festuca plants. Plant Cell Rep. 26, 1663–1672.

    Article  PubMed  CAS  Google Scholar 

  • Sabine J. R. and Raymond E. Z. 1991 Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley. J. Biol. Chem. 266, 4677–4685.

    Google Scholar 

  • Salam A., Hollington P. A., Gorham J., Wyn Jones G. R. and Gliddon C. 1999 Physiological genetics of salt tolerance in wheat (Triticun aestivun L.): performance of wheat varieties, inbred lines and reciprocal F1 hybrids under saline conditions. J. Agron. Crop Sci. 183, 145–156.

    Article  CAS  Google Scholar 

  • Santa-Maria G. E., Rubio F., Dubcovsky J. and Rodriguez-Navarro A. 1997 The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9, 2281–2289.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M., Svendsen I. and Feierabend J. 1995 Analysis of the primary structure of the chloroplast isozyme of triosephosphate isomerase from rye leaves by protein and cDNA sequencing indicates a eukaryotic origin of its gene. Biochim. Biophys. Acta 1261, 257–264.

    PubMed  Google Scholar 

  • Shan L., Zhao S. Y. and Xia G. M. 2005 Cloning of the full-length cDNA of the wheat involved in salt stress: root hair defective 3 gene (RHD3). J. Integr. Plant Biol. 47, 881–891.

    Article  CAS  Google Scholar 

  • Shen Q. H., Zhou F. S., Bieri S., Haizel T., Shirasu K. and Schulze-Lefert P. 2003 Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15, 732–744.

    Article  PubMed  CAS  Google Scholar 

  • Shewry P. R. and Jones H. D. 2005 Transgenic wheat: where do we stand after the first 12 years? Ann. Appl. Bio. 147, 1–14.

    Article  CAS  Google Scholar 

  • Shewry P. R., Halford N. G., Belton P. S. and Tatham A. S. 2002 The structure and properties of gluten: an elastic protein from wheat grain. Philos. Trans. R. Soc. London, Ser. B 357, 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Shure M., Wessler S. and Fedoroff N. 1983 Molecular identification and isolation of the waxy locus in maize. Cell 35, 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E., Baheildin A., Wraith J. M., Al-Niemi T., Dyer W. E., Ho T. H. D. and Qu R. 2000a Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E., Brey C.W., Dyer W. E., Talbert L. E. and Qu R. 2000b Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (Nib) gene. Mol. Breeding. 6, 469–477.

    Article  CAS  Google Scholar 

  • Sivamani E., Brey C. W., Talbert L. E., Young M. A., Dyer W. E., Kaniewski W. K. and Qu R. 2002 Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgenic Res. 11, 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Sivitz A. B., Reinders A. and Ward J.M. 2005 Analysis of the transport activity of barley sucrose transporter HvSUT1. Plant Cell Physiol. 46, 1666–1673.

    Article  PubMed  CAS  Google Scholar 

  • Skinner J. S., Szucs P., von Zitzewitz J., Marquez-Cedillo L., Filichkin T., Stockinger E. J. et al. 2006 Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor. Appl. Genet. 112, 832–842.

    Article  PubMed  CAS  Google Scholar 

  • Smidansky E. D., Clancy M., Meyer F. D., Lanning S. P., Blake N. K., Talbert L. E. and Giroux M. J. 2002 Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc. Natl. Acad. Sci. USA 99, 1724–1729.

    Article  PubMed  CAS  Google Scholar 

  • Smidansky E. D., Martin J. M., Hannah L. C., Fischer A. M. and Giroux M. J. 2003 Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase, Planta 216, 656–664.

    PubMed  CAS  Google Scholar 

  • Snowden K. C. and Gardner R. C. 1993 Five genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol. 103, 855–861.

    Article  PubMed  CAS  Google Scholar 

  • Stamova B. S., Laudencia-Chingcuanco D. and Beckles D.M. 2009 Transcriptomic analysis of starch biosynthesis in the developing grain of hexaploid wheat. Inter. J. Plant Genom. Article ID 407426 (doi:10.1155/2009/407426).

  • Sun M., Yan Y., Jiang Y., Xiao Y., Hu Y., Cai M., Li Y. et al. 2004 Molecular cloning and comparative analysis of a y-type inactive HMW glutenin subunit gene from cultivated emmer wheat (Triticum dicoccum L.). Hereditas 141, 46–54.

    Article  PubMed  Google Scholar 

  • Thomashow M. F. 1999 Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50, 571–599.

    Article  PubMed  CAS  Google Scholar 

  • Tosi P., D’Ovidio R., Napier J. A., Bekes F. and Shewry P. R. 2004 Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theor. Appl. Genet. 108, 468–476.

    Article  PubMed  CAS  Google Scholar 

  • Tosi P., Parker M., Gritsch C. S., Carzaniga R., Martin B. and Shewry P. R. 2009 Trafficking of storage proteins in developing grain of wheat. J. Exp. Bot. 60, 979–991.

    Article  PubMed  CAS  Google Scholar 

  • Uauy C., Distelfeld A., Fahima T., Blechl A. and Dubcovsky J. 2006 A NAC gene regulating senescence improves grain protein, Zn and Fe content in wheat. Science 314, 1298–1301.

    Article  PubMed  CAS  Google Scholar 

  • Wan P., Ling L. J., Zhou W. J., Zhang W. J., Ling H. Q., Zhu L. H. and Zhang X. Q. 2004 Cloning, sequence and expression analysis of a zinc finger protein gene in wheat. Acta Genet Sin. 31, 895–900.

    PubMed  CAS  Google Scholar 

  • Wan Y., Wang D., Shewry P. R. and Halford N. G. 2002 Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrical. Theor. Appl. Genet. 104, 828–839.

    Article  PubMed  CAS  Google Scholar 

  • Wang J. R., Yan Z. H., Wei Y. M. and Zheng Y. L. 2004 A novel high-molecular-weight glutenin subunit gene Ee1.5 from Elytrigia elongata (Host) Nevski. J. Cereal Sci. 40, 289–294.

    Article  CAS  Google Scholar 

  • Wang J. R., Wei Y. M., Yan Z. H. and Zheng Y. L. 2005 Detection of single nucleotide polymorphisms in the 24 kDa dimeric α-amylase inhibitors from cultivated wheat and its diploid putative progenitors. Biochim. Biophys. Acta 1723, 309–320.

    PubMed  CAS  Google Scholar 

  • Wang J. R., Yan Z. H., Wei Y. M. and Zheng Y. L. 2006 Characterization of high-molecular-weight glutenin subunits genes from Elytrigia elongata (Host) Nevski. Plant Breeding 125, 89–95.

    Article  CAS  Google Scholar 

  • Wang J. R., Zhang L., Wei Y.M., Yan Z. H., Baum B. R., Nevo E. and Zheng Y. L. 2007a Sequence polymorphisms and relationships of dimeric α-amylase inhibitor genes in the B genomes of Triticum and S genomes of Aegilops. Plant Sci. 173, 1–11.

    Article  CAS  Google Scholar 

  • Wang J. R., Yan Z. H., Wei Y. M., Baum B. R. and Zheng Y. L. 2007b Sequence variations and molecular phylogenetic analyses of the HMW-GS genes from different genomes in Triticeae. Bio. Sys. Ecol. 35, 421–433.

    Article  CAS  Google Scholar 

  • Wang J. R., Wei Y. M., Long X. Y., Yan Z. H., Nevo E., Baum B. R. and Zheng Y. L. 2008 Molecular evolution of dimeric α-amylase inhibitor genes in wild emmer wheat and its ecological association. BMC Evol. Biol. 8, 91.

    Article  PubMed  CAS  Google Scholar 

  • Wang W. X., Vinocur B. and Altman A. 2003 Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wang X. Q., Zhang G. W., Wei J. H., Wang H. Z. and Li R. F. 2007 Primary studies on physiological mechanisms of salt tolerance in Hordeum brevisubulatum under salt stress. Acta Agric. Bor. Sin. 22, 17–21.

    CAS  Google Scholar 

  • Waters B. M., Uauy C., Dubcovsky J. and Grusak M. A. 2009 Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Exp. Bot. 60, 4263–4274.

    Article  PubMed  CAS  Google Scholar 

  • Wei F. S., Wing R. A. and Wise R. P. 2002 Genome dynamics and evolution of the mla (powdery mildew) resistance locus in barley. Plant Cell 14, 1903–1917.

    Article  PubMed  CAS  Google Scholar 

  • Weschke W., Panitz R., Sauer N., Wang Q., Neubohn B., Weber H. and Wobus U. 2001 Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J. 21, 455–467.

    Article  Google Scholar 

  • Xia L. Q., Geng H.W., Chen X. M., He Z. H., Lillemo M. and Morris C. F. 2008 Silencing of puroindoline a alters the kernel texture in transgenic bread wheat. J. Cereal Sci. 47, 331–338.

    Article  CAS  Google Scholar 

  • Xue Z. Y., Zhi D. Y., Xue G. P., Zhang H., Zhao Y. X. and Xia G. M. 2004 Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 167, 849–859.

    Article  CAS  Google Scholar 

  • Yahiaoui N., Brunner S. and Keller B. 2006 Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47, 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N., Srichumpa P., Dudler R. and Keller B. 2004 Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528–538.

    Article  PubMed  CAS  Google Scholar 

  • Yan L. L., Loukoianov A., Tranquilli G., Helguera M., Fahima T. and Dubcovsky J. 2003 Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    Article  PubMed  CAS  Google Scholar 

  • Yan L. L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P. et al. 2004 The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.

    Article  PubMed  CAS  Google Scholar 

  • Yan Z. H., Wan Y. F., Liu K. F., Zheng Y. L. and Wang D. W. 2002 Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chinese Sci. Bull. 47, 220–225.

    Article  Google Scholar 

  • Yao Q., Cong L., Chang J. L., Li K. X., Yang G. X. and He G. Y. 2006 Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J. Exp. Bot. 57, 3737–3746.

    Article  PubMed  CAS  Google Scholar 

  • Yao Y. Y., Ni Z. F., Chem R. M., Wu L. M. and Sun Q. X. 2005 Cloning of a down-regulated gene encoding small GTP binding protein in hybrid wheat. Prog. Nat. Sci. 15, 621–626.

    Article  CAS  Google Scholar 

  • Yasemin A. 2003 Identification of the genes involved in “phytosiderophore” synthesis and metal ion uptake in wheat using RT-PCR. The Middle East Technical University Thesis Ankana, Turkey (http://etd.lib.metu.edu.tr/upload/3/1252857/index.pdf.

    Google Scholar 

  • Zhang G. F., Meng L. and Mao P. C. H. 2007 Study on the identification of the drought resistance of Elytrigia repens and E. intermedia at seedling stage. Acta Agric. Bor. Sin. 22, 54–59.

    Google Scholar 

  • Zhou F. S., Kurth J. C., Wei F., Elliott C., Vale G., Yahiaoui N. et al. 2001 Cell-autonomous expression of barley Mla1 confers racespecific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13, 337–350.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Qi, P., Wei, Y. et al. Molecular characterization and functional analysis of elite genes in wheat and its related species. J Genet 89, 539 (2010). https://doi.org/10.1007/s12041-010-0074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-010-0074-2

Keywords

Navigation