Journal of Genetics

, 89:417 | Cite as

Comparing genetic ancestry and self-reported race/ethnicity in a multiethnic population in New York City

  • Yin Leng Lee
  • Susan Teitelbaum
  • Mary S. Wolff
  • James G. Wetmur
  • Jia ChenEmail author
Research Article


Self-reported race/ethnicity is frequently used in epidemiological studies to assess an individual’s background origin. However, in admixed populations such as Hispanic, self-reported race/ethnicity may not accurately represent them genetically because they are admixed with European, African and Native American ancestry. We estimated the proportions of genetic admixture in an ethnically diverse population of 396 mothers and 188 of their children with 35 ancestry informative markers (AIMs) using the STRUCTURE version 2.2 program. The majority of the markers showed significant deviation from Hardy-Weinberg equilibrium in our study population. In mothers self-identified as Black and White, the imputed ancestry proportions were 77.6% African and 75.1% European respectively, while the racial composition among self-identified Hispanics was 29.2% European, 26.0% African, and 44.8% Native American. We also investigated the utility of AIMs by showing the improved fitness of models in paraoxanase-1 genotype-phenotype associations after incorporating AIMs; however, the improvement was moderate at best. In summary, a minimal set of 35 AIMs is sufficient to detect population stratification and estimate the proportion of individual genetic admixture; however, the utility of these markers remains questionable.


population stratification ancestry informative markers (AIMs) race ethnicity genetic epidemiology forensic genetics Hispanics 


  1. Berkowitz G. S., Obel J., Deych E., Lapinski R., Godbold J., Liu Z. et al. 2003 Exposure to indoor pesticides during pregnancy in a multiethnic, urban cohort. Environ. Health Perspect. 1, 79–84.Google Scholar
  2. Berkowitz G. S., Wetmur J. G., Birman-Deych E., Obel J., Lapinski R. H. et al. 2004 In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ. Health Perspect. 3, 388–391.Google Scholar
  3. Bonilla C., Shriver M. D., Parra E. J., Jones A. and Fernandez J. R. 2004 Ancestral proportions and their association with skin pigmentation and bone mineral density in Puerto Rican women from New York city. Hum. Genet. 1, 57–68.CrossRefGoogle Scholar
  4. Braun L. 2002 Race, ethnicity, and health: can genetics explain disparities? Perspect. Biol. Med. 2, 159–174.CrossRefGoogle Scholar
  5. Chen J., Kumar M., Chan W., Berkowitz G. and Wetmur J. G. 2003 Increased influence of genetic variation on PON1 activity in neonates. Environ. Health Perspect. 11, 1403–1409.CrossRefGoogle Scholar
  6. Choudhry S., Coyle N. E., Tang H., Salari K., Lind D., Clark S. L. et al. 2006 Population stratification confounds genetic association studies among Latinos. Hum. Genet. 5, 652–664.CrossRefGoogle Scholar
  7. Choudhry S., Seibold M. A., Borrell L. N., Tang H., Serebrisky D., Chapela R. et al. 2007 Dissecting complex diseases in complex populations: asthma in latino americans. Proc. Am. Thorac. Soc. 3, 226–233.CrossRefGoogle Scholar
  8. Falush D., Stephens M. and Pritchard J. K. 2003 Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 4, 1567–1587.Google Scholar
  9. Gonzalez Burchard E., Borrell L. N., Choudhry S., Naqvi M., Tsai H. J., Rodriguez Santana J. R. et al. 2005 Latino populations: a unique opportunity for the study of race, genetics, and social environment in epidemiological research. Am. J. Public Health 12, 2161–2168.CrossRefGoogle Scholar
  10. Hoggart C. J., Parra E. J., Shriver M. D., Bonilla C., Kittles R. A., Clayton D. G. and McKeigue P. M. 2003 Control of confounding of genetic associations in stratified populations. Am. J. Hum. Genet. 6, 1492–1504.CrossRefGoogle Scholar
  11. LaVeist T. A. 1994 Beyond dummy variables and sample selection: what health services researchers ought to know about race as a variable. Health Serv. Res. 1, 1–16.Google Scholar
  12. Lee S. S., Mountain J. and Koenig B. A. 2001 The meanings of “race” in the new genomics: implications for health disparities research. Yale J. Health Policy Law Ethics 1, 33–75.PubMedGoogle Scholar
  13. Parra E. J., Marcini A., Akey J., Martinson J., Batzer M. A., Cooper R. et al. 1998 Estimating African American admixture proportions by use of population-specific alleles. Am. J. Hum. Genet. 6, 1839–1851.CrossRefGoogle Scholar
  14. Pritchard J. K. and Rosenberg N. A. 1999 Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 1, 220–228.CrossRefGoogle Scholar
  15. Pritchard J. K., Stephens M., Rosenberg N. A. and Donnelly P. 2000a Association mapping in structured populations. Am. J. Hum. Genet. 1, 170–181.CrossRefGoogle Scholar
  16. Pritchard J. K., Stephens M. and Donnelly P. 2000b Inference of population structure using multilocus genotype data. Genetics 2, 945–959.Google Scholar
  17. Reiner A. P., Ziv E., Lind D. L., Nievergelt C. M., Schork N. J., Cummings S. R. et al. 2005 Population structure, admixture, and aging-related phenotypes in African American adults: the Cardiovascular Health Study. Am. J. Hum. Genet. 3, 463–477.CrossRefGoogle Scholar
  18. Risch N., Burchard E., Ziv E. and Tang H. 2002 Categorization of humans in biomedical research: genes, race and disease. Genome Biol. 7, comment 2007.Google Scholar
  19. Salari K., Choudhry S., Tang H., Naqvi M., Lind D., Avila P. C. et al. 2005 Genetic admixture and asthma-related phenotypes in Mexican American and Puerto Rican asthmatics. Genet. Epidemiol. 1, 76–86.CrossRefGoogle Scholar
  20. Shaffer J. R., Kammerer C. M., Reich D., McDonald G., Patterson N., Goodpaster B. et al. 2007 Genetic markers for ancestry are correlated with body composition traits in older African Americans. Osteoporos. Int. 6, 733–741.CrossRefGoogle Scholar
  21. Shriver M. D., Smith M. W., Jin L., Marcini A., Akey J. M., Deka R. and Ferrell R. E. 1997 Ethnic-affiliation estimation by use of population-specific DNA markers. Am. J. Hum. Genet. 4, 957–964.Google Scholar
  22. Smith M.W., Lautenberger J. A., Shin H. D., Chretien J. P., Shrestha S., Gilbert D. A. and O’Brien S. J. 2001 Markers for mapping by admixture linkage disequilibrium in African American and Hispanic populations. Am. J. Hum. Genet. 5, 1080–1094.CrossRefGoogle Scholar
  23. Tang H., Quertermous T., Rodriguez B., Kardia S. L., Zhu X., Brown A. et al. 2005 Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am. J. Hum. Genet. 2, 268–275.CrossRefGoogle Scholar
  24. Tobler A. R., Short S., Andersen M. R., Paner T. M., Briggs J. C., Lambert S. M. et al. 2005 The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J. Biomol. Tech. 4, 398–406.Google Scholar
  25. Yaeger R., Avila-Bront A., Abdul K., Nolan P. C., Grann V. R., Birchette M. G. et al. 2008 Comparing genetic ancestry and self-described race in african americans born in the United States and in Africa. Cancer Epidemiol. Biomarkers Prevent. 6, 1329–1338.CrossRefGoogle Scholar
  26. Ziv E., John E. M., Choudhry S., Kho J., Lorizio W., Perez-Stable E. J. and Burchard E. G. 2006 Genetic ancestry and risk factors for breast cancer among Latinas in the San Francisco Bay Area. Cancer Epidemiol. Biomarkers Prevent. 10, 1878–1885.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  • Yin Leng Lee
    • 1
    • 2
  • Susan Teitelbaum
    • 1
  • Mary S. Wolff
    • 1
  • James G. Wetmur
    • 2
    • 3
  • Jia Chen
    • 1
    • 4
    • 5
    Email author
  1. 1.Departments of Preventive MedicineMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of MicrobiologyMount Sinai School of MedicineNew YorkUSA
  3. 3.Department of Genetics and Genomic SciencesMount Sinai School of MedicineNew YorkUSA
  4. 4.Department of PediatricsMount Sinai School of MedicineNew YorkUSA
  5. 5.Department of Oncological ScienceMount Sinai School of MedicineNew YorkUSA

Personalised recommendations