Journal of Genetics

, Volume 89, Issue 2, pp 163–171 | Cite as

Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid

  • Hua Ping Zhu
  • Mai Xin Lu
  • Feng Ying Gao
  • Zhang Han Huang
  • Li Ping Yang
  • Jian Fang Gui
Research Article


In this study, classical and molecular cytogenetic analyses were performed in tilapia fishes, Oreochromis mossambicus (XX/XY sex determination system), O. urolepis hornorum (WZ/ZZ sex determination system) and their hybrid by crossing O. mossambicus female × O. u. hornorum male. An identical karyotype ((2n = 44, NF (total number of chromosomal arms) = 50) was obtained from three examined tilapia samples. Genomic organization analysis of 5S rDNA revealed two different types of 5S rDNA sequences, 5S type I and 5S type II. Moreover, fluorescence in situ hybridization (FISH) with 5S rDNA probes showed six positive fluorescence signals on six chromosomes of all the analysed metaphases from the three tilapia samples. Subsequently, 45S rDNA probes were also prepared, and six positive fluorescence signals were observed on three chromosome pairs in all analysed metaphases of the three tilapia samples. The correlation between 45 rDNA localization and nucleolar organizer regions (NORs) was confirmed by silver nitrate staining in tilapia fishes. Further, different chromosomal localizations of 5S rDNA and 45S rDNA were verified by two different colour FISH probes. Briefly, the current data provide an insights for hybridization projects and breeding improvement of tilapias.


karyotype 5S rDNA NORs fluorescent in situ hybridization (FISH) tilapia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affonso P. R. and Pedro M. G. 2005 Chromosomal diversification of reef fishes from genus Centropyge (Perciformes, Pomacanthidae). Genetica 123, 227–233.CrossRefPubMedGoogle Scholar
  2. Alves-Costa F. A., Wasko A. P., Oliveira C., Foresti F. and Martins C. 2006 Genomic organization and evolution of the 5S ribosomal DNA in Tilapiine fishes. Genetica 127, 243–252.CrossRefPubMedGoogle Scholar
  3. Brinn A. M., Porto J. R. and Feldberg E. 2004 Karyological evidence for interspecific hybridization between Cichla monoculus and C. temensis (Perciformes, Cichlidae) in the Amazon. Hereditas 141, 252–257.CrossRefPubMedGoogle Scholar
  4. Chen M. R. and Chen H. X. 1983 A comparative study of karyotypes in three Tilapia fishes. Acta. Genet. Sinica 10, 56–62. (in Chinese).Google Scholar
  5. Feldberg E. and Bertollo L. A. 1985 Nucleolar Organizing regions in some species of Neotropical cichlid fish (Pisces, Perciformes). Caryologia 38, 319–324.Google Scholar
  6. Feldberg E., Porto J. I. and Bertollo L. A. 2003 Chromosomal changes and adaptation of cichlid fishes during evolution. In Fish adaptation (ed. A. L. Val and B. G. Kapoor), pp. 285–308. Science Publishers, New York, USA.Google Scholar
  7. Ferro D. A., Néo D. M., Moreira-Filho O. and Bertollo L. A. 2001 Nucleolar organizing regions, 18S and 5S rDNA in Astyanax scabripinnis (Pisces, Characidae), populations distribution and functional diversity. Genetica 110, 55–62.CrossRefGoogle Scholar
  8. Fishelson L. 1966 Cichlidae of the genus of Tilapia in Israel. Bamidgeh 18, 67–89.Google Scholar
  9. Foresti F., Oliveira C., Galetti Jr P. M. and Almeida-Toledo L. F. 1993 Synaptonemal complex analysis in spermatocytes of Tilapia, Oreochromis niloticus (Pisces, Cichlidae). Genome 36, 1124–1128.CrossRefPubMedGoogle Scholar
  10. Fujiwara A., Fujiwara M., Nishida-Umehara C., Abe S. and Masaoka T. 2007 Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers. Genetica 131, 267–274.CrossRefPubMedGoogle Scholar
  11. Fukuoka H. and Muramoto J. I. 1975 Somatic and meiotic chromosomes of Tilapia mossambica Peters. Chromosome Inf. Serv. 18, 4–6.Google Scholar
  12. Gao J. M. 1986 A description of in vivo technique for chromosome preparation in fish (Oreochromis andersonis) and its karyotype. Hereditas 8, 42–44 (in Chinese).Google Scholar
  13. Gui J. F. 1999 Fish developmental genetics and artificial propagation, In Fish genetics and breeding engineering (ed. C. Wu and J. F. Gui), pp. 41–62. Shanghai Scientific and Technical Publishers, Shanghai, P. R. China.Google Scholar
  14. Hickling C. F. 1960 The Malacca Tilapia hybrids. J. Genet. 57, 1–10.CrossRefGoogle Scholar
  15. Hinegardner R. and Rosen D. E. 1972 Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 106, 621–644.CrossRefGoogle Scholar
  16. Kakagawa S. M., Portela-Castro M. A. and Martins-Santos I. C. 2007 A Study of nucleolus organizing regions by Ag-staining, in situ hybridization and chromomycin A3 techniques in Tilapia rendalli (Cichlidae, Perciformes) of the river Iguaçu basin, Paraná, Brazil. Cytologia 72, 373–378.CrossRefGoogle Scholar
  17. Kevin F. 2008 Tilapia farming integrated with field crops: a new model for global farming. In Proceedings of the fifth international tilapia industry development forum (ed. H. Cui), pp. 2–12. HaiNan, Haikou, P. R. China.Google Scholar
  18. Kocher T. D. 2004 Adaptive evolution and explosive speciation, the cichlid fish model. Nat. Rev. Genet. 5, 288–298.CrossRefPubMedGoogle Scholar
  19. Komiya H., Hasegawa M. and Takemura S. 1986 Differentiation of oocyte- and somatic-type 5S rRNAs in animals. J. Biochem. 100, 369–374.PubMedGoogle Scholar
  20. Kornfield I. L., Ritte U., Richler C. and Wahrman J. 1979 Biochemical and cytological differentiation among Cichlid fishes of the Sea of Galilee. Evolution 33, 1–14.CrossRefGoogle Scholar
  21. Kwon J. K. and Kim B. D. 2009 Localization of 5S and 25S rRNA Genes on somatic and meiotic chromosomes in Capsicum species of chili pepper. Mol. Cell 27, 205–209.CrossRefGoogle Scholar
  22. Laura M., Mary D. and Delany E. 2003 Molecular and cytogenetic organization of the 5S ribosomal DNA array in chicken (Gallus gallus). Chromosome Res. 11, 305–317.CrossRefGoogle Scholar
  23. Liu Y. J. and Yu Q. X. 1991 Electron microscopic observation of synaptonemal complexes in spermatocytes of six species of fishes. Acta Genet. Sinica 18, 407–414 (in Chinese).Google Scholar
  24. Lomholt B., Christensen K., Hallenberg C. and Frederiksen S. 1995 Porcine 5S rRNA genes map to 14q23 revealing syntenic relation to human HSPA-6 and -7. Mamm. Genome 6, 439–441.CrossRefPubMedGoogle Scholar
  25. Long E. O. and David I. D. 1980 Repeated genes in eukaryotes. Annu. Rev. Biochem. 49, 727–764.CrossRefPubMedGoogle Scholar
  26. Martins C., Oliveira C., Wasko A. P. and Wright J. M. 2004 Physical mapping of the Nile tilapia (Oreochromis niloticus) genome by fluorescent in situ hybridization of repetitive DNAs to metaphase chromosomes-a review. Aquaculture 231, 37–49.CrossRefGoogle Scholar
  27. Martins C., Ferreira I. A., Oliveira C., Foresti F. and Galetti Jr P.M. 2006 A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 127, 133–141.CrossRefPubMedGoogle Scholar
  28. Martins C., Wasko A. P., Oliveira C., Porto-Foresti F., Parise-Maltempi P. P., Wright J. M. and Foresti F. 2002 Dynamics of 5S rDNA in the tilapia (Oreochromis niloticus) genome: repeat units, inverted sequences, pseudogenes and chromosome loci. Cytogenet. Genome Res. 98, 78–85.CrossRefPubMedGoogle Scholar
  29. Martins C. P. and Galetti P. M. 2001 Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 44, 903–910.CrossRefPubMedGoogle Scholar
  30. Martins I. C., Portella-Castro A. L. and Julio Jr H. F. 1995 Chromosome analysis of five species of the Cichlidae family (Pisces-Perciformes) from the Paran river. Cytologia 60, 223–231.Google Scholar
  31. Mazzuchelli J. and Martins C. 2009 Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus. Genetica 136, 461–469.CrossRefPubMedGoogle Scholar
  32. Morescalchi M. A., Liguori I., Rocco L., Archimandritis A. and Stingo V. 2008 Karyotypic characterization and genomic organization of the 5S rDNA in Polypterus senegalus (Osteichthyes, Polypteridae). Genetica 132, 179–186.CrossRefPubMedGoogle Scholar
  33. Nirchio M., Oliveira C., Ferreira I. A., Martins C., Rossi A. R. and Sola L. 2009 Classical and molecular cytogenetic characterization of Agonostomus monticola, a primitive species of Mugilidae (Mugiliformes). Genetica 135, 1–5.CrossRefPubMedGoogle Scholar
  34. Pendás A. M., Morán P., Freije J. P. and García-Vázquez E. 1994 Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. Cytogenet. Cell Genet. 67, 31–36.CrossRefPubMedGoogle Scholar
  35. Puerma E., Acosta M. J., Barragán M. J., Martínez S., Marchal J. A., Bullejos M. and Sánchez A. 2008 The karyotype and 5S rRNA genes from Spanish individuals of the bat species Rhinolophus hipposideros (Rhinolophidae; Chiroptera). Genetica 134, 287–295.CrossRefPubMedGoogle Scholar
  36. Sambrook J. and Russell D. W. 2001 Molecular cloning: A laboratory manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA.Google Scholar
  37. Suzuki H., Sakurai S. and Matsuda, Y. 1996 Rat rDNA spacer sequences and chromosomal assignment of the genes to the extreme terminal region of chromosome 19. Cytogenet. Cell Genet. 72, 1–4.CrossRefPubMedGoogle Scholar
  38. Tave D. 1995 Production of all-male Tilapia aurea by sex-reversed broodstock. Aquaculture 96, 78–81.Google Scholar
  39. Thompson K.W. 1981 Karyotypes of six species of African Cichlidae (Pisces: Perciformes). Experientia 37, 351–352.CrossRefPubMedGoogle Scholar
  40. Vervoort A. 1980 The karyotypes of seven species of Tilapia (Teleostei: Cichlidae). Cytologia 45, 651–656.Google Scholar
  41. Wang R. F., Ma K., Shi L. M. and He W. S. 1990 Studies on C-,Ag-banding chromosomes and meiotic synaptonemal compiex of tilapia nilotica. Zoological Res. 11, 349–354 (in Chinese).Google Scholar
  42. Yang S., Wang K. Y., Huang Z. H. and Lu M. X. 2008 Studies on the principal biological characteristics of Oreochromis hornorumï Oreochromis mossambicus and the growth performance of hybrid F1. J. Sichuan Agri. Univ. 23, 93–98 (in Chinese).Google Scholar
  43. Yi M. S., Li Y. Q., Liu J. D., Zhou L., Yu Q. X. and Gui J. F. 2003 Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch. Chromosome Res. 11, 665–671.CrossRefPubMedGoogle Scholar
  44. Yogeeswaran K., Frary A., York T. L., Amenta A., Lesser A. H., Nasrallah J. B. et al. 2005 Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res. 15, 505–515.CrossRefPubMedGoogle Scholar
  45. Yu X. J., Zhou T., Li Y. C., Li K. and Zhou M. 1989 Chromosomes of Chinese fresh-water fishes, pp. 146–147. Science Press, Beijing, P. R. China.Google Scholar
  46. Zhu H. P. and Gui J. F. 2007 Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture 265, 109–117.CrossRefGoogle Scholar
  47. Zhu H. P., Ma D. M. and Gui J. F. 2006 Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosome Res. 14, 767–776.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  • Hua Ping Zhu
    • 1
  • Mai Xin Lu
    • 1
  • Feng Ying Gao
    • 1
  • Zhang Han Huang
    • 1
  • Li Ping Yang
    • 1
  • Jian Fang Gui
    • 2
  1. 1.Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations