Skip to main content

Advertisement

Log in

Identification of Phytophthora sojae genes involved in asexual sporogenesis

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

To explore the molecular mechanisms involved in asexual spore development in Phytophthora sojae, the zoospores of strain PS26 were treated with ultraviolet (UV) irradiation. After selection, a mutant progeny, termed PS26-U03, was obtained and demonstrated to exhibit no oospore production. A suppression subtractive hybridization (SSH) approach was developed to investigate differences in gene expression between PS26 and PS26-U03 during asexual sporogenesis. Of the 126 sequences chosen for examination, 39 putative unigenes were identified that exhibit high expression in PS26. These sequences are predicted to encode proteins involved in metabolism, cell cycle, protein biosynthesis, cell signalling, cell defence, and transcription regulation. Seven clones were selected for temporal expression analysis using RT-PCR based on the results of the dot-blot screens. Three of the selected genes, developmental protein DG1037 (UB88), glycoside hydrolase (UB149) and a hypothetical protein (UB145), were expressed only in PS26, whereas the transcripts of phosphatidylinositol-4-phosphate 5-kinase (UB36), FAD-dependent pyridine nucleotide-disulphide oxidoreductase (UB226) and sugar transporter (UB256) were expressed at very low levels in PS26-U03 but at high levels in PS26.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S. F., Madden T. L., Shaffer A. A., Zhang Z., Zhang J., Miller W. and Lipman D. J. 1997 Gapped BLAST and PSIBLAST: a new generation of protein database search program. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S. and Wang M. C. 1983 Biochemical aspects of morphogenesis in Phytophthora. In Phytophthora, its biology, taxonomy, ecology, and pathology (ed. D. C. Erwin, S. Bartnicki-Garcia and P. H. Tsao), pp. 121–137. APS Press, St Paul, USA.

    Google Scholar 

  • Bhat R. G. and Schmitthenner A. F. 1992 Virulence evaluation of single oospore culture of various physiologic races of Phytophthora sojae. Phytopathology 82, 1082–1088.

    Google Scholar 

  • Bhat R. G. and Schmitthenner A. F. 1993 Genetic crosses between physiologic races of Phytophthora sojae. Exp. Mycol. 17, 122–129.

    Article  Google Scholar 

  • Bulman S., Siemens J., Ridgway H. J., Eady C. and Conner A. J. 2006 Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiol. Lett. 264, 198–204.

    Article  PubMed  CAS  Google Scholar 

  • Bumbieris M. 1974 Characteristics of two Phytophthora species. Aust. J. Bot. 22, 655–660.

    Article  Google Scholar 

  • Cassab G. I. 1998 Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 281–309.

    Article  PubMed  CAS  Google Scholar 

  • Cramer R. A. and Lawrence C. B. 2004 Identification of Alternaria brassicicola genes expressed in plants during pathogenesis of Arabidopsis thaliana. Fungal Genet. Biol. 41, 115–128.

    Article  PubMed  CAS  Google Scholar 

  • Deacon J. W. and Donaldson S. P. 1993 Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171.

    Article  CAS  Google Scholar 

  • Dearnaley J. D. W., Maleszka J. and Hardham A. R. 1996 Synthesis of zoospore peripheral vesicles during sporulation of Phytophthora cinnamomi. Mycol. Res. 100, 39–48.

    Article  Google Scholar 

  • Diatchenko L., Lau Y. C., Campbell A. P., Chenchik A., Moqadam F., Huang B. et al. 1996 Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.

    Article  PubMed  CAS  Google Scholar 

  • Eisen M. B., Spellman P. T., Brown P. O. and Botstein D. 1998 Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  • Ellington W. R. 2001 Evolution and physiological roles of phosphagen systems. Annu. Rev. Physiol. 63, 289–325.

    Article  PubMed  CAS  Google Scholar 

  • Fabritius A.-L., Cvitanich C. and Judelson H. S. 2002 Stage-specific gene expression during sexual development in Phytophthora infestans. Mol. Microbiol. 45, 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  • Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E. and Mello C. C. 1998 Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  • Fleissner A., Sopalla C. and Weltring K. M. 2002 An ATP-binding cassette multidrug-resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. Mol. Plant Microbe Interact. 15, 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Gaulin E., Jauneau A., Villalba F., Rickauer M., Esquerre-Tugaye M. T. and Bottin A. 2002 The CBEL glycoprotein of Phytophthora parasitica var. nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J. Cell Sci. 115, 4565–4575.

    Article  PubMed  CAS  Google Scholar 

  • Gubler F., Hardham A. R. and Duniec J. 1989 Characterising adhesiveness of Phytophthora cinnamomi zoospores during encystment. Protoplasma 149, 24–30.

    Article  Google Scholar 

  • Hannon G. J. 2002 RNA interference. Nature 418, 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Hardham A. R. and Gubler F. 1990 Polarity of attachment of zoospores of a root pathogen and pre-alignment of the emerging germ tube. Cell Biol. Int. Rep. 14, 947–956.

    Article  Google Scholar 

  • Hardham A. R. 2001 The cell biology behind Phytophthora pathogenicity. Aust. Plant Pathol. 30, 91–98.

    Article  Google Scholar 

  • Hemmes D. E. 1983 Cytology of Phytophthora. In Phytophthora, its biology, taxonomy, ecology, and pathology (ed. D. C. Erwin, S. Bartnicki-Garcia and P. H. Tsao), pp. 9–40. APS Press, St Paul, USA.

    Google Scholar 

  • Kamoun S., Hraber P. T., Sobral B., Nuss D. and Govers F. 1999 Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet. Biol. 28, 94–106.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann M. J. and Gerdemann J. W. 1958 Root and stem rot of soybean caused by Phytophthora sojae n. sp. Phytopathology 48, 201–208.

    Google Scholar 

  • Kerwin J. L. and Washino R. K. 1986 Regulation of oosporogenesis by Lagenidium giganteum promotion of sexual reproduction by unsaturated fatty-acids and sterol availability. Can. J. Microbiol. 32, 294–300.

    Article  CAS  Google Scholar 

  • Lisitsyn N., Lisitsyn N. and Wigler M. 1993 Cloning the differences between two complex genomes. Science 259, 946–951.

    Article  PubMed  CAS  Google Scholar 

  • Mateos F.V., Rickauer M. and Esquerre-Tugaye M. T. 1997 Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectinlike activities. Mol. Plant Microbe. Interact. 10, 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  • Mewes H. W., Frishman D., Guldener U., Mannhaupt G., Mayer K., Mokrejs M. et al. 2002 MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34.

    Article  PubMed  CAS  Google Scholar 

  • Mone M. J., Volker M., Nikaido O., Mullenders L. H. F., van Zeeland A. A., Verschure P. J. et al. 2001 Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep. 2, 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  • Neumann M. J. and Dobinson K. F. 2003 Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet. Biol. 38, 54–62.

    Article  PubMed  CAS  Google Scholar 

  • Pereira C. A., Alonso G. D., Paveto M. C., Iribarren A., Cabanas M. L., Torres H. N. and Flawia M. M. 2000 Trypanosoma cruzi arginine kinase characterization and cloning: a novel energetic pathway in protozoan parasites. J. Biol. Chem. 275, 1495–1501.

    Article  PubMed  CAS  Google Scholar 

  • Randall T. A., Dwyer R. A., Huitema E., Beyer K., Cvitanich C., Kelkar H. et al. 2005 Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol. Plant Microbe. Interact. 18, 229–243.

    Article  PubMed  Google Scholar 

  • Ribeiro O. K. 1983 Physiology of asexual sporulation and spore germination in Phytophthora. In Phytophthora, its biology, taxonomy, ecology, and pathology (ed. D. C. Erwin, S. Bartnicki-Garcia and P. H. Tsao), pp. 55–70. APS Press, St Paul, USA.

    Google Scholar 

  • Robold A. V. and Hardham A. R. 2005 During attachment Phytophthora spores secrete proteins containing thrombospondin type 1 repeats. Curr. Genet. 47, 307–315.

    Article  PubMed  CAS  Google Scholar 

  • Rutherford F. S., Ward E.W. and Buzzel R. I. 1985 Variation in virulence in successive single zoospore propagations of Phytophthora megasperma f. sp. glycinea. Phytopathology 75, 371–374.

    Article  Google Scholar 

  • Shim W. B. and Dunkle L. D. 2002 Identification of genes expressed during cercosporin biosynthesis in Cercospora zeaemaydis. Physiol. Mol. Plant Pathol. 61, 237–248.

    Article  CAS  Google Scholar 

  • Trail F., Xu J. R., San Miguel P., Halgren R. G. and Kistler H. C. 2003 Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet. Biol. 38, 187–197.

    Article  PubMed  Google Scholar 

  • Tyler B. M., Tripathy S., Zhang X. M., Dehal P., Jiang R. H. Y., Aerts A. et al. 2006 Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261–1266.

    Article  PubMed  CAS  Google Scholar 

  • Tyler B. M. 2007 Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol. Plant Pathol. 8, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Wei H., Scherer M., Singh A., Liese R. and Fischer R. 2001 Aspergillus nidulans alpha-1,3 glucanase (mutanase), muta, is expressed during sexual development and mobilizes mutan. Fungal Genet. Biol. 34, 217–227.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziying Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, Z., Shen, J. et al. Identification of Phytophthora sojae genes involved in asexual sporogenesis. J Genet 88, 141–148 (2009). https://doi.org/10.1007/s12041-009-0021-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-009-0021-2

Keywords

Navigation