Skip to main content
Log in

Circadian and pharmacological regulation of casein kinase I in the hamster suprachiasmatic nucleus

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In mammals, the mechanism for the generation of circadian rhythms and entrainment by light-dark (LD) cycles resides in the hypothalamic suprachiasmatic nuclei (SCN), and the principal signal that adjusts this biological clock with environmental timing is the light:dark cycle. Within the SCN, rhythms are generated by a complex of molecular feedback loops that regulate the transcription of clock genes, including per and cry. Posttranslational modification plays an essential role in the regulation of biological rhythms; in particular, clock gene phosphorylation by casein kinase I, both epsilon (CKIɛ) and delta (CKIδ), regulates key molecular mechanisms in the circadian clock. In this paper, we report for the first time that CKI activity undergoes a significant circadian rhythm in the SCN (peaking at circadian time 12, the start of the subjective night), and its pharmacological inhibition alters photic entrainment of the clock, indicating that CKI may be a key element in this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostino P. V., Ferreyra G. A., Murad A. D., Watanabe Y. and Golombek D. A. 2004 Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochem. Int. 44, 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Agostino P. V., Harrington M. E., Ralph M. R. and Golombek D. A. 2008 Casein kinase-1-epsilon (CKIɛ) and circadian photic responses in hamsters. Chronobiol. Int. (in press).

  • Akashi M., Tsuchiya Y., Yoshino T. and Nishida E. 2002 Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKI epsilon) and CKI delta in cultured cells. Mol. Cell Biol. 22, 1693–1703.

    Article  PubMed  CAS  Google Scholar 

  • Alappat E. C., Feig C., Boyerinas B., Volkland J., Samuels M., Murmann A. E. et al. 2005 Phosphorylation of FADD at serine 194 by CKI regulates its nonapoptotic activities. Mol. Cell 19, 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Badura L., Swanson T., Adamowicz W., Adams J., Cianfrogna J., Fisher K. et al. 2007 An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions. J. Pharmacol. Exp. Ther. 322, 730–738.

    Article  PubMed  CAS  Google Scholar 

  • Cheng H. L. and Louis C. F. 2001 Functional effects of casein kinase I-catalyzed phosphorylation on lens cell-to-cell coupling. J. Membr. Biol. 181, 21–30.

    PubMed  CAS  Google Scholar 

  • Chergui K., Svenningsson P. and Greengard P. 2005 Physiological role for casein kinase 1 in glutamatergic synaptic transmission. J. Neurosci. 25, 6601–6609.

    Article  PubMed  CAS  Google Scholar 

  • Chijiwa T., Hagiwara M. and Hidaka H. 1989 A newly synthesized selective casein kinase I inhibitor, N-(2-aminoethyl)-5-chloroisoquinoline-8-sulfonamide, and affinity purification of casein kinase I from bovine testis. J. Biol. Chem. 264, 4924–4927.

    PubMed  CAS  Google Scholar 

  • Eide E. J., Vielhaber E. L., Hinz W. A. and Virshup D. M. 2002 The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I epsilon. J. Biol. Chem. 277, 17248–17254.

    Article  PubMed  CAS  Google Scholar 

  • Eide E. J., Woolf M. F., Kang H., Woolf P., Hurst W., Camacho F. et al. 2005 Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25, 2795–2807.

    Article  PubMed  CAS  Google Scholar 

  • Gallego M. and Virshup D. M. 2007 Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Gallego M., Eide E. J., Woolf M. F., Virshup D. M. and Forger D. B. 2006 An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc. Natl. Acad. Sci. USA 103, 10618–10623.

    Article  PubMed  CAS  Google Scholar 

  • Golombek D. A., Agostino P. V., Plano S. A. and Ferreyra G. A. 2004. Signalling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem. Int. 45, 929–936.

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y. K., Yagita T., Fukuyama M., Nishimura M., Nagano Y., Shigeyoshi S. et al. 2001 Constitutive expression and delayed light response of casein kinase I epsilon and I delta mRNAs in the mouse suprachiasmatic nucleus. J. Neurosci. Res. 64, 612–6.

    Article  PubMed  CAS  Google Scholar 

  • Ko C. H. and Takahashi J. S. 2006 Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271–R277.

    Article  PubMed  CAS  Google Scholar 

  • Lee C., Etchegaray J. P., Cagampang F. R., Loudon A. S. and Reppert S. M. 2001 Post-translational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867.

    Article  PubMed  CAS  Google Scholar 

  • Lowrey P. L., Shimomura K., Antoch M. P., Yamazaki S., Zemenides P. D., Ralph M. R. et al. 2000 Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Meng Q. J., Logunova L., Maywood E. S., Gallego M., Lebiecki J., Brown T. M. et al. 2008 Setting clock speed in mammals: the CKIepsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78–88.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K., Nagase T., Mesaki M., Narukawa J., Ohara O and Ishida N. 2004 Phosphorylation of clock protein PER1 regulates its circadian degradation in normal human fibroblasts. Biochem. J. 380, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Morin L. P. and Allen C. N. 2006 The circadian visual system, 2005. Brain Res. Rev. 51, 1–60.

    Article  PubMed  CAS  Google Scholar 

  • Preuss F., Fan J. Y., Kalive M., Bao S., Schuenemann E., Bjes E. S. and Price J. L. 2004 Drosophila doubletime mutations which either shorten or lengthen the period of circadian rhythms decrease the protein kinase activity of casein kinase I. Mol. Cell Biol. 24, 886–898.

    Article  PubMed  CAS  Google Scholar 

  • Ralph M. R. and Menaker M. 1988 A mutation of the circadian system in golden hamsters. Science 241, 1225–1227.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura K., Kornhauser J. M., Wisor J. P., Umezu T., Yamazaki S., Ihara N. L. et al. 1998 Circadian behavior and plasticity of light-induced c-fos expression in SCN of tau mutant hamsters. J. Biol. Rhythms 13, 305–314.

    Article  PubMed  CAS  Google Scholar 

  • Toh K. L., Jones C. R., He Y., Eide E. J., Hinz W. A., Virshup D. M. et al. 2001 An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043.

    Article  PubMed  CAS  Google Scholar 

  • Vanselow K., Vaselow J. T., Westermark P. O., Reischl S., Maier B., Korte T. et al. 2006 Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS): Genes Dev. 20, 2660–2672.

    Article  PubMed  CAS  Google Scholar 

  • Virshup D. M., Eide E. J., Forger D. B., Gallego M. and Harnish E.V. 2007 Reversible protein phosphorylation regulates circadian rhythms. Cold. Spr. Harb. Symp. Quant. Biol. 72, 413–420.

    Article  CAS  Google Scholar 

  • Xu Y., Padiath Q. S., Shapiro R. E., Jones C. R., Wu S. C., Saigoh N. et al. 2005 Functional consequences of a CKI delta mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego A. Golombek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostino, P.V., Plano, S.A. & Golombek, D.A. Circadian and pharmacological regulation of casein kinase I in the hamster suprachiasmatic nucleus. J Genet 87, 467–471 (2008). https://doi.org/10.1007/s12041-008-0069-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-008-0069-4

Keywords

Navigation