Skip to main content
Log in

Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm of fission yeast chromosome II, we have mapped five new ARS elements using systematic subcloning and transformation assay. 2D analysis of one of the ARS plasmids that showed highest transformation frequency localized the replication origin activity within the cloned genomic DNA. All the new ARS elements are localized in two clusters in centromere proximal 40 kb of the region. The presence of at least six ARS elements, including the previously reported ars727, is suggestive of a higher origin density in this region than that predicted earlier using a computer based search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell S. P. 2002 The origin recognition complex: from simple origins to complex functions. Genes & Dev. 16, 659–672.

    Article  CAS  Google Scholar 

  • Bell S. P. and Stillman B. 1992 ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Brewer B. J. and Fangman W. L. 1987 The localization of replication origin on ARS plasmids in Saccharomyces cerevisiae. Cell 51, 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Caddle M. S. and Calos M. P. 1994 Specific initiation at an origin of replication from Schizosaccharomyces pombe. Mol. Cell. Biol. 14, 1796–1805.

    PubMed  CAS  Google Scholar 

  • Campbell J. L. and Newlon C. S. 1991 Chromosomal DNA replication. In The molecular and cellular biology of the yeast Saccharomyces: Genome dynamics, protein synthesis, and energetics. (ed. J. R. Broach), pp. 41–146, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Dubey D. D., Davis L. R., Greenfeder S. A., Ong L. Y., Zhu J., Broach J. R. et al. 1991 Evidence suggesting that the ARS elements associated with silencers of the yeast mating type locus HML do not function as chromosomal DNA replication origins. Mol. Cell. Biol. 11, 5346–5355.

    PubMed  CAS  Google Scholar 

  • Dubey D. D., Zhu J., Carlson D. L., Sharma K. and Huberman J. A. 1994 Three ARS elements contribute to the ura4 replication origins region in the fission yeast Schizosaccharomyces pombe. EMBO J. 13, 3638–3647.

    PubMed  CAS  Google Scholar 

  • Dutta A. and Bell S. P. 1997 Initiation of DNA replication in eukaryotic cells. In Ann. Rev. Cell Dev. Biol. 13, 293–332.

    Article  CAS  Google Scholar 

  • Fangman W. L., Hice R. H. and Chlebowicz-Sledziewska E. 1983 ARS replication during yeast S phase. Cell 32, 831–838.

    Article  PubMed  CAS  Google Scholar 

  • Friedman K. L., Brewer B. J. and Fangman W. L. 1997 Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2, 667–678.

    Article  PubMed  CAS  Google Scholar 

  • Gietz D., Jean A. S., Woods R. A. and Schiestl R. H. 1992 Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman C. S. and Winston F. 1987 A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao C. L. and Carbon J. 1979 High frequency transformation of yeast by plasmid containing the cloned yeast ARG gene. Proc. Natl. Acad. Sci. 76, 3829–3833.

    Article  PubMed  CAS  Google Scholar 

  • Huberman J. A. 1999 Genetic methods for characterizing the cis-acting components of yeast DNA replication origins. Methods 18, 356–367.

    Article  PubMed  CAS  Google Scholar 

  • Kelly T. J. and Brown G. W. 2000 Regulation of chromosomal replication. Ann. Rev. Biochem. 69, 829–880.

    Article  PubMed  CAS  Google Scholar 

  • Linskens M. H. K. and Huberman J. A. 1988 Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 4927–4935.

    PubMed  CAS  Google Scholar 

  • Masukata H., Huberman J. A., Frattini M. G. and Kelly T. J. 2004 DNA Replication in Schizosaccharomyces pombe. In The molecular biology of Schizosaccharomyces pombe: Genetics, Genomics and beyond (ed. R. Egel), pp. 73–99. Springer, Berlin.

    Google Scholar 

  • Maundrell K., Hutchison A. and Shall S. 1988 Sequence analysis of ARS elements in fission yeast. EMBO J. 7, 2203–2209.

    PubMed  CAS  Google Scholar 

  • Mechali M. and Kearsey S. 1984 Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 38, 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Newlon C. S., Collins I., Dershowitz A., Deshpande A. M., Greenfeder S. A., Ong L. Y. and Theis J. F. 1993 Analysis of replication origin function on chromosome III of Saccharomces cerevisiae. Cold Spring Harbor Symp. Quant. Biol. 58, 415–423.

    PubMed  CAS  Google Scholar 

  • Okuno Y., Okazaki T. and Masukata H. 1997 Identification of a predominant replication origin in fission yeast. Nucleic Acids Res. 25, 530–536.

    Article  PubMed  CAS  Google Scholar 

  • Poloumienko A., Dershowitz A., De J. and Newlon C. S. 2001 Completion of replication map of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell 12, 3317–3327.

    PubMed  CAS  Google Scholar 

  • Raghuraman M. K., Winzeler E. A., Collingwood D., Hunt S., Wodika L., Conway A. et al. 2001 Replication dynamics of the yeast genome. Science 294, 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E. F. and Maniatis T. 1989 “Molecular cloning” a laboratory manual.” Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

  • Segurado M., de Luis A. and Antequera F. 2003 Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO reports 4, 1048–1053.

    Article  PubMed  CAS  Google Scholar 

  • Shirahige K., Iwasaki T., Rashid M. B., Ogasawara N. and Yoshikawa H. 1993 Localization and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5043–5056.

    PubMed  CAS  Google Scholar 

  • Sikorski R. S. and Hieter P. 1989 A System of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    PubMed  CAS  Google Scholar 

  • Smith J. G., Caddle M. S., Bulboaca G. H., Baum M., Clarke L. and Calos M. P. 1995 Replication of centromere II of Schizosaccharomyces pombe. Mol. Cell. Biol. 15, 5165–5172.

    PubMed  CAS  Google Scholar 

  • Stinchcomb D. T., Struhl K. and Davis R. W. 1979 Isolation and characterization of yeast chromosomal replicator. Nature 282, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth J. G., Bulboaca G. H., Moghadam M., Caddle M. S. and Calos M. P. 1994 Physical mapping of origins of replication in the fission yeast, Schizosaccharomyces pombe. Mol. Biol. Cell 5, 839–849.

    PubMed  CAS  Google Scholar 

  • Wyrick J. J., Aparicio J. G., Chen T., Barnett J. D., Jennings E. G., Young R. A. et al. 2001 Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins. Science 294, 2357–2360.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita M., Hori Y., Shinomiya T., O’Buse C., Tsurimoto T., Yoshikawa H. and Shirahige K. 1997 The Efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae Chromosome VI. Genes Cells 2, 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Yompakdee C. and Huberman J. A. 2004 Enforcement of late replication origin firing by clusters of short G-rich sequences. J. Biol. Chem. 279, 42337–42344.

    Article  PubMed  CAS  Google Scholar 

  • Zakian V. A. and Scott J. F. 1982 Construction, replication, and chromatin structure of TRP 1-R1 circle, a multicopy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA. Mol. Cell. Biol. 2, 221–232.

    PubMed  CAS  Google Scholar 

  • Zhu J., Carlson D. L., Dubey D. D., Sharma K. and Huberman J. A. 1994 Comparison of the two major ARS elements of the ura4 replication origins region with other ARS elements in the fission yeast, Schizosaccharomyces pombe. Chromosoma 103, 414–422.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharani Dhar Dubey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, V.K., Dubey, D.D. Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe . J Genet 86, 139–148 (2007). https://doi.org/10.1007/s12041-007-0018-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-007-0018-7

Keywords

Navigation