Skip to main content
Log in

Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The Sox9 gene is one of the important transcription factors in the development of many tissues and organs, particularly in sex determination and chondrogenesis. We amplified the genomic DNA of Cyprinus carpio using degenerate primers, and found that there were two versions of Sox9 in this species: Sox9a and Sox9b, that differ in having an intron of different length (704 bp and 616 bp, respectively) in the conserved HMG box region that codes for identical amino acid sequences. We used a two-phase rapid amplification of cDNA ends (RACE) for the isolation of full-length cDNA of Sox9b. Sequence analyses revealed a 2447-bp cDNA containing 233-bp 5′ untranslated region, a 927-bp 3′ untranslated region, including poly(A), and a 1287 bp open reading frame (ORF) encoding a protein of 428 amino acids. The HMG box of 79 amino acid motif was confirmed from positions 96–174. Sequence alignment showed that the identity of amino acids of Sox9 among ten animal species, including C. carpio, is 75%, indicating that the Sox9 gene is evolutionarily quite conserved. The expression level of Sox9b gene varied among several organs of adult C. carpio, with the level of expression being highest in the brain and testis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baron D., Houlgatte R., Fostier A. and Guiguen Y. 2005 Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol. Reprod. 73, 959–966.

    Article  PubMed  CAS  Google Scholar 

  • Bowles J., Schepers G. and Koopman P. 2000 Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239–255.

    Article  PubMed  CAS  Google Scholar 

  • Chaboissier M. C., Kobayashi A., Vidal V. I., Lutzkendorf S., van de Kant H. J., Wegner M. et al. 2004 Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131, 1891–1901.

    Article  PubMed  CAS  Google Scholar 

  • Chang Z., Du Q. and Shao H. 2002 New advances in Sox gene family. Hereditas (Beijing) 24, 470–476.

    CAS  Google Scholar 

  • Chiang E. F., Pai C. I., Wyatt M., Yan Y. L., Postlethwait J. and Chung B. 2001 Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev. Biol. 231, 149–163.

    Article  PubMed  CAS  Google Scholar 

  • Cresko W. A., Yan Y. L., Baltrus D. A., Amores A., Singer A., Rodriguez-Mari A. and Postlethwait J. H. 2003 Genome duplication, sub-function partitioning, and lineage divergence: Sox9 in stickleback and zebrafish. Dev. Dynam. 228, 480–489.

    Article  CAS  Google Scholar 

  • Devlin R. H. and Nagahama Y. 2002 Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.

    Article  CAS  Google Scholar 

  • Foster J. W., Dominguez-Steglich M. A., Guioli S., Kowk G., Weller P. A., Stevanovic M. et al. 1994 Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525–530.

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y., Hiramatsu R., Matoba S. and Kidokoro T. 2005 From SRY to SOX9: mammalian testis differentiation. J. Biochem. (Tokyo) 138, 13–19.

    CAS  Google Scholar 

  • Kirpichnikov V.S. 1981 Genetic bases of fish selection. pp. 40–42 Springer, Berlin.

    Google Scholar 

  • Knower K. C., Kelly S. and Harley V. R. 2003 Turning on the male: SRY, SOX9 and sex determination in mammals. Cytogenet. Genome Res. 101, 185–198.

    Article  PubMed  CAS  Google Scholar 

  • Koopman P., Gubbay J., Vivian N., Goodfellow P. and Lovell-Badge R. 1991 Male development of chromosomally female mice transgenic for SRY. Nature 351, 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Lasala C., Carre-Eusebe D., Picard J. Y. and Rey R. 2004 Subcellular and molecular mechanisms regulating anti-Mullerian hormone gene expression in mammalian and non-mammalian species. DNA Cell Biol. 23, 572–585.

    PubMed  CAS  Google Scholar 

  • Lu H., Cheng H., Guo Y. and Zhou R. 2003 Two alleles of the Sox9a2 in the rice field eel. J. Exp. Zool. B: Mol. Dev. Evol. 299, 36–40.

    Google Scholar 

  • Morrish B. C. and Sinclair A. H. 2002 Vertebrate sex determination: many means to an end. Reproduction 124, 447–457.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Mari A., Yan Y. L., Bremiller R. A., Wilson C., Canestro C. and Postlethwait J. H. 2005 Characterization and expression pattern of zebrafish anti-Mullerian hormone (Amh) relative to Sox9a, Sox9b, and cyp19a1a, during gonad development. Gene Expr. Patterns 5, 655–667.

    Article  PubMed  CAS  Google Scholar 

  • Sekido R., Bar I., Narvaez V., Penny G. and Lovell-Badge R. 2004 SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev. Biol. 274, 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair A. H., Berta P., Palmer M. S., Hawkins J. R., Griffths B. L., Smith M. J. et al. 1990 A gene from the human sex determining region encodes a protein with homology to a conserved DNA binding motif. Nature 346, 240–244.

    Article  PubMed  CAS  Google Scholar 

  • Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J. et al. 1994 Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Wilson M. J., Jeyasuria P., Parker K. L. and Koopman P. 2005 The transcription factors steroidogenic factor-1 and Sox9 regulate expression of vanin-1 during mouse testis development. J. Biol. Chem. 280, 5917–5923.

    Article  PubMed  CAS  Google Scholar 

  • Yokoi H., Kobayashi T., Tanaka M., Nagahama Y., Wakamatsu Y., Takeda H. et al. 2002 Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol. Repr. Dev. 63, 5–16.

    Article  CAS  Google Scholar 

  • Zhan R. and Song Z. 1980 Analysis and comparison between the karyotypes of Cyprinus carpio and Carassius auratus, as well as Aristichthya nobilis and Hypophthatmichthys molitrix. Acta Genet. Sinica 7, 72–77.

    Google Scholar 

  • Zhou R., Liu L., Guo Y., Yu H., Cheng H., Huang X. et al. 2003 Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol. Repr. Dev. 66, 211–217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Jie Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, QY., Wang, FY., Hua, HY. et al. Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio . J Genet 86, 85–91 (2007). https://doi.org/10.1007/s12041-007-0013-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-007-0013-z

Keywords

Navigation