Skip to main content
Log in

Differences in the characteristics and triggering mechanisms of two successive AL index onsets on 21st January 2005

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Southward component of Interplanetary Magnetic Field (IMF) leads to the entry of energetic particles of solar origin into the magnetosphere. A part of this energy is subsequently released from the night-side as a geomagnetic substorm via the loading and unloading process in the magnetotail. However, other than this classical understanding of substorm, there exists an alternate particle entry mechanism, which mainly triggers weak to moderate substorms. So far, there is no clear understanding of how an intense substorm can be triggered without appreciable southward turning of IMF. In this paper, we have carried out a detailed multi-instrument analysis of a very strong substorm associated with the impingement of solar wind pressure impulse that took place on 21st January 2005 when IMF was not southward. It is observed that during the initial ~10 minutes of the substorm onset, the AL index reached ~–2000 nT, with particle precipitation being centred near dawn and not midnight. The usual substorm expansion phase with typical signatures of Near-Earth-Neutral-Line (NENL) magnetic reconnection, dipolarization and plasmoid formation started when IMF turned southward after ~10 minutes of the first onset on this day. Using the present case study, we have tried to explain what are the characteristics of shock-triggered substorms and where the energy comes from to power such strong events. The dominance of dawn centered precipitation during the initial phase can be attributed to increased particle interaction with the ULF waves enhanced due to prevalent K–H instability caused by strong velocity shear in the dawn sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Akasofu S I 1964 The development of the auroral substorm; Planet. Space Sci. 12 273–282.

    Article  Google Scholar 

  • Akasofu S I 1975 The roles of the north–south component of the interplanetary magnetic field on large scale auroral dynamics observed by the DMSP satellite; Planet. Space Sci. 23 1349, https://doi.org/10.1016/0032-0633(75)90030-6.

    Article  Google Scholar 

  • Akasofu S I, Perreault P D, Yasuhara F and Meng C-I 1973 Auroral substorms and the interplanetary magnetic field; J. Geophys. Res. 78(31) 7490–7508, https://doi.org/10.1029/JA078i031p07490.

    Article  Google Scholar 

  • Allen J H and Kroehl H W 1975 Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices; J. Geophys. Res. 80 3607–3677.

    Article  Google Scholar 

  • Axford W I and Hines C O 1961 A unifying theory of high-latitude geophysical phenomena and magnetic storms; Can. J. Phys. 39 1433.

    Article  Google Scholar 

  • Baker D N, Pulkkinen T I, Angelopoulos V, Baumjohann W and McPherron R L 1996 Neutral line model of substorms: Past results and present view; J. Geophys. Res. 101 12,975–13,010.

    Article  Google Scholar 

  • Baumjohann W, Hesse M, Kokubun S, Mukai T, Nagai T and Petrukovich A 1999 Substorm dipolarization and recovery; J. Geophys. Res. 104(A11) 24,995–25,000, https://doi.org/10.1029/1999JA900282.

    Article  Google Scholar 

  • Behera J K, Sinha A K, Singh A K, Rawat R, Vichare G, Dhar A, Pathan B M, Nair K U, Selvaraj C and Elango P 2014 First results from imaging riometer installed at Indian Antarctic station Maitri; J. Earth Syst. Sci. 123(3) 593–602.

    Article  CAS  Google Scholar 

  • Behera J K, Sinha A K, Vichare G, Kozyreva O, Rawat R and Dhar A 2016 Dayside cosmic noise absorption at the equatorward boundary of auroral oval as observed from Maitri, Antarctica (L = 5; CGM 62.45°S, 55.45°E); J. Geophys. Res. 121 3198–3211, https://doi.org/10.1002/2016JA022418.

    Article  Google Scholar 

  • Browne S, J K Hargreaves and B Honary 1995 An imaging riometer for ionospheric studies, Electron. Commun. Eng., https://doi.org/10.1049/ecej:19950505.

  • Burch J L 1972 Preconditions for the triggering of polar magnetic substorms by storm sudden commencements; J. Geophys. Res. 77(28) 5629–5632, https://doi.org/10.1029/JA077i028p05629.

    Article  Google Scholar 

  • Davis T Neil and Sugiura Masahisa 1966 Auroral electrojet activity index AE and its universal time variations; J. Geophys. Res. 71(3) 785–801, https://doi.org/10.1029/jz071i003p00785.

    Article  Google Scholar 

  • Dmitriev A V, Suvorova A V, Chao J K, Wang C B, Rastaetter L and Panasyuk M I et al. 2014 Anomalous dynamics of the extremely compressed magnetosphere during 21 January 2005 magnetic storm; J. Geophys. Res.: Space Phys. 119(2) 877–896, https://doi.org/10.1002/2013JA019534.

  • Du A, Tsurutani B and Sun W 2008 Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFS; J. Geophys. Res. 113(A10) A10214, https://doi.org/10.1029/2008ja013284.

    Article  Google Scholar 

  • Echer E, Gonzalez W D, Tsurutani B T and Gonzalez A L C 2008 Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006); J. Geophys. Res. 113(A5) A05221, https://doi.org/10.1029/2007JA012744.

    Article  CAS  Google Scholar 

  • Freeman M P, Farrugia C J, Burlaga L F, Hairston M R, Greenspan M E, Ruohoniemi J M and Lepping R P 1993 The interaction of a magnetic cloud with the Earth: Ionospheric convection in the Northern and Southern hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions; J. Geophys. Res. 98 7633, https://doi.org/10.1029/92JA02350.

    Article  Google Scholar 

  • Frey H U, Mende S B, Immel T J, Gerard J C, Hubert B, Habraken S, Spann J, Gladstone G R, Bisikalo D V and Shematovich V I 2003 Summary of quantitative interpretation of IMAGE far ultraviolet auroral data; Space Sci. Rev. 109 255–283, https://doi.org/10.1023/B:SPAC.0000007521.39348.a5.

    Article  Google Scholar 

  • Frey H U, Mende S B, Angelopoulos V and Donovan E F 2004 Substorm onset observations by IMAGE-FUV; J. Geophys. Res. 109 A10304.

    Article  Google Scholar 

  • Frey H U, Desheng Han, Ryuho Kataoka, Marc R Lessard, Stephen E Milan, Yukitoshi Nishimura, Robert J Strangeway and Ying Zou 2019 Dayside aurora; Space Sci. Rev. 215 51, https://doi.org/10.1007/s11214-019-0617-7.

  • Glocer A, Fok M, Meng X, Toth G, Buzulukova N, Chen S and Lin K 2013 CRCM + BATS-R-US two-way coupling; J. Geophys. Res. 118(4) 1635–1650, https://doi.org/10.1002/jgra.50221.

    Article  Google Scholar 

  • Grocott A, Cowley S W H, Sigwarth J B, Waterman J F and Yeoman T K 2002 Excitation of twin-vortex flow in the night-side high-latitude ionosphere during an isolated substorm; Ann. Geophys. 20(10) 1577–1601, https://doi.org/10.5194/angeo-20-1577-2002.

    Article  Google Scholar 

  • Hajra R and Tsurutani B T 2018 Interplanetary shocks inducing magnetospheric supersubstorms (SML <−2500 nT): Unusual auroral morphologies and energy flow; Astrophys. J. 858 123, https://doi.org/10.3847/1538-4357.

    Article  Google Scholar 

  • Hones E W Jr 1976 The magnetotail: Its generation and dissipation; Phys. Sol. Plan. Env. (ed.) D J Williams, AGU, Washington DC, pp. 558–571.

  • Jelly D and Brice N 1967 Changes in Van Allen radiation associated with polar substorms; J. Geophys. Res. 72(23) 5919–5931, https://doi.org/10.1029/JZ072i023p05919.

    Article  Google Scholar 

  • Johnson J R, Wing S and Delamere P A 2014 Kelvin Helmholtz instability in planetary magnetospheres; Space Sci. Rev. 184(1–4) 1–31.

    Article  Google Scholar 

  • Kalegaev V, Vlasova N and Peng Z 2015 Dynamics of the magnetosphere during geomagnetic storms on January 21–22, 2005 and December 14–15, 2006; Cos. Res. 53(2) 98–110, https://doi.org/10.1134/s0010952515020033.

  • Kamide Y, Perreault P D, Akasofu S I and Winningham J D 1977 Dependence of substorm occurrence probability on the interplanetary magnetic field and on the size of the auroral oval; J. Geophys. Res. 82(35) 5521–5528, https://doi.org/10.1029/JA082i035p05521.

    Article  Google Scholar 

  • Kane R 2012 Interplanetary and geomagnetic parameters during January 16–26, 2005; Planet Space Sci. 62(1) 97–99, https://doi.org/10.1016/j.pss.2011.12.011.

    Article  Google Scholar 

  • Kawasaki K, Akasofu S I, Yasuhara F and Meng C I 1971 Storm sudden commencements and polar magnetic substorms; J. Geophys. Res. 76 6781.

    Article  Google Scholar 

  • Kozyra J U, Manchester W B, Escoubet C P, Lepri S T, Liemohn M W and Gonzalez W D et al. 2013 Earth’s collision with a solar filament on 21 January 2005: Overview; J. Geophys. Res.: Space Phys. 118(10) 5967–5978, https://doi.org/10.1002/jgra.50567.

  • Kozyra J U, Liemohn M W, Cattell C, De Zeeuw D, Escoubet C P and Evans D S et al. 2014 Solar filament impact on 21 January 2005: Geospace consequences; J. Geophys. Res.: Space Phys. 119(7) 5401–5448, https://doi.org/10.1002/2013JA019748.

  • Lee D Y, Choi K C, Ohtani S, Lee J H, Kim K C, Park K S and Kim K H 2010 Can intense substorms occur under northward IMF conditions?; J. Geophys. Res. 115 A01211, https://doi.org/10.1029/2009JA014480.

    Article  Google Scholar 

  • Liou K, Wu C C, Lepping R P, Newell P T and Meng C I 2002 Midday sub-auroral patches (MSPs) associated with interplanetary shocks; Geophys. Res. Lett. 29(16) 1771, https://doi.org/10.1029/2001GL014182.

    Article  Google Scholar 

  • Little C G 1954 High latitude ionospheric observations using extraterrestrial radio waves; Proc. IRE 42 1700–1701.

    Google Scholar 

  • Little C G and Leinbach H 1958 Some measurements of high-latitude ionospheric absorption using extra-terrestrial radio waves; Proc. IRE 46 334–348.

    Article  Google Scholar 

  • Little C G and Leinbach H 1959 The riometer – a device for continuous measurement of ionospheric absorption; Proc. IRE 47 315–320.

    Article  Google Scholar 

  • Liu J J, Hu H Q and Han D S 2019 Interplanetary shock-associated aurora; Adv. Polar Sci. 30(1) 11–23, https://doi.org/10.13679/j.advps.2019.1.00011.

    Article  Google Scholar 

  • Lui A T Y 1996 Current disruption in the Earth’s magnetosphere: Observations and models; J. Geophys. Res. 101 13,067–13,088.

    Article  Google Scholar 

  • Lui A T Y, Akasofu S I, Hones E W Jr, Bame S J and McIlwain C E 1976 Observation of the plasma sheet during a contracted oval substorm in a prolonged quiet period; J. Geophys. Res. 81 1415, https://doi.org/10.1029/JA081i007p01415.

    Article  Google Scholar 

  • Ma X, Delamere P, Otto A and Burkholder B 2017 Plasma transport driven by the three‐dimensional Kelvin–Helmholtz instability; J. Geophys. Res.: Space Phys. 122(10) 10,382–10,395, https://doi.org/10.1002/2017JA024394.

  • Mende S B, Heetderks H, Frey H U, Lampton M, Geller S P, Habraken S, Renotte E, Jamar C, Rochus P, Spann J, Fuselier S A, Gerard J C, Gladstone R, Murphree S and Cogger L 2000 Far ultraviolet imaging from the IMAGE spacecraft: 1. System design; Space Sci. Rev. 91 243–270, https://doi.org/10.1023/A:1005271728567.

    Article  CAS  Google Scholar 

  • Meng C I, Tsurutani B, Kawasaki K and Akasofu S I 1973 Cross-correlation analysis of the AE index and the interplanetary magnetic field Bz component; J. Geophys. Res. 78 617–629, https://doi.org/10.1029/JA078i004p00617.

    Article  Google Scholar 

  • Mitchell D G, F Kutchko and D J Williams 1987 An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere; J. Geophys. Res. 92(A7), https://doi.org/10.1029/JA092iA07p07394.

  • Mitra A P and Shain C A 1953 The measurement of ionospheric absorption using observations of 18.3 Mc/s cosmic radio noise; J. Atmos. Terr. Phys. 4 204–218.

    Article  Google Scholar 

  • Miura A 1984 Anomalous transport by magnetohydrodynamic Kelvin–Helmholtz instabilities in the solar wind–magnetosphere interaction; J. Geophys. Res. 89(A2) 801–818.

    Article  Google Scholar 

  • Miura A 1987 Simulation of Kelvin–Helmholtz instability at the magnetospheric boundary; J. Geophys. Res. 92(A4) 3195–3206, https://doi.org/10.1029/JA092iA04p03195.

    Article  Google Scholar 

  • Miyashita Y, Machida S, Liou K, Mukai T, Saito Y, Hayakawa H, Meng C I and Parks G K 2003 Evolution of the magnetotail associated with substorm auroral breakups; J. Geophys. Res. 108(A9) 1353, https://doi.org/10.1029/2003JA009939.

    Article  Google Scholar 

  • Miyashita Y, Kamide Y, Liou K, Wu C C, Ieda A, Nishitani N, Machida S, Saito Y and Mukai T 2011 Successive substorm expansions during a period of prolonged northward interplanetary magnetic field; J. Geophys. Res. 116 A09221, https://doi.org/10.1029/2011JA016719.

    Article  Google Scholar 

  • Moen J, Sandholt P E and Egeland A 2001 Pre- and post-noon asymmetry in activity and convection related magnetosphere interactions dayside auroral to solar wind; Adv. Space Res. 27(8) 1363–1372.

    Article  Google Scholar 

  • Moro J, Denardini C M, Correia E, Abdu M A, Schuch N J and Makita K 2012 A comparision of two different techniques for deriving the quiet day curve from SARINET riometer data; Ann. Geophys. 30 1159–1168.

    Article  Google Scholar 

  • Newell P T and Gjerloev J W 2011 Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power; J. Geophys. Res. 116 A12211, https://doi.org/10.1029/2011JA016779.

    Article  Google Scholar 

  • Nishida A 1971 Interplanetary origin of electric fields in the magnetosphere; Cosmic Electrodyn. 2 35.

    Google Scholar 

  • Nishida A, Mukai T, Yamamoto T, Kokubun S and Maezawa K 1998 A unified model of the magnetotail convection in geomagnetically quiet and active times; J. Geophys. Res. 103 4409, https://doi.org/10.1029/97JA01617.

    Article  Google Scholar 

  • Ogino T, Walker R J, Ashour Abdalla M and Dawson J M 1986 An MHD simulation of the effects of the interplanetary magnetic field By component on the interaction of the solar wind with the Earth’s magnetosphere during southward interplanetary magnetic field; J. Geophys. Res. 91(10) 029, https://doi.org/10.1029/JA091iA09p10029.

    Article  Google Scholar 

  • Park K S, Ogino T and Walker R J 2006 On the importance of antiparallel reconnection when the dipole tilt and IMF By are nonzero; J. Geophys. Res. 111 A05202, https://doi.org/10.1029/2004JA010972.

    Article  Google Scholar 

  • Petrukovich A A, Baumjohann W, Nakamura R, Mukai T and Troshichev O A 2000 Small substorms: Solar wind input and magnetotail dynamics; J. Geophys. Res. 105(A9) 21,109–21,118, https://doi.org/10.1029/2000JA900057.

    Article  Google Scholar 

  • Rees M H 1963 Auroral ionization and excitation by incident energetic electrons; Planet. Space Sci. 11(10) 1209–1218, https://doi.org/10.1016/0032-0633(63)90252-6.

    Article  Google Scholar 

  • Reiff P H and J L Burch 1985 IMF By-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 2. A global model for northward and southward IMF; J. Geophys. Res. 90 1595, https://doi.org/10.1029/JA090iA02p01595.

  • Rostoker G 1968 Relationship between the onset of a geomagnetic bay and the configuration of the interplanetary magnetic field; J. Geophys. Res. 73(13) 4382–4387.

  • Rout D, Patra S, Kumar S, Chakrabarty D, Reeves G D and Stolle C et al. 2023 The growth of ring current/SYM-H under northward IMF Bz conditions present during the 21–22 January 2005 geomagnetic storm; Space Weather 21 e2023SW003489, https://doi.org/10.1029/2023SW003489.

  • Sandholt P E, Farrugia C J, Cowley S W H and Lester M 2001 Dayside auroral bifurcation sequence during By-dominated interplanetary magnetic field: Relationship with merging and lobe convection cells; J. Geophys. Res. 106 15429.

    Article  Google Scholar 

  • Schieldge J P and Siscoe G L 1970 A correlation of the occurrence of simultaneous sudden magnetospheric compressions and geomagnetic bay onsets with selected geophysical indices; J. Atmos. Terr. Phys. 32 1819–1830.

    Article  Google Scholar 

  • Singh A K, Sinha A K, Rawat R, Jayashree B, Pathan B M and Dhar A 2012 A broad climatology of very high latitude substorms; Adv. Space Res. 50 1512–1523.

    Article  Google Scholar 

  • Stauning P 1994 Investigations of ionospheric radio wave absorption processes using imaging riometer techniques; J. Atmos. Terr. Phys. 58 753–764.

    Article  Google Scholar 

  • Tamas I Gombosi, Yuxi Chen, Alex Glocer, Zhenguang Huang, Xianzhe Jia, Michael W Liemohn, Ward B Manchester, Tuija Pulkkinen, Nishtha Sachdeva, Qusai Al Shidi, Igor V Sokolov, Judit Szente, Valeriy Tenishev, Gabor Toth, Bart van der Holst, Daniel T Welling, Lulu Zhao and Shasha Zou 2021 What sustained multi-disciplinary research can achieve: The space weather modeling framework; J. Space Weather Space Clim. 11 42, https://doi.org/10.1051/swsc/2021020.

  • Terasawa T et al. 1997 Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration; Geophys. Res. Lett. 24 935–938, https://doi.org/10.1029/96GL04018.

    Article  CAS  Google Scholar 

  • Tomita S et al. 2011 Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices; Ann. Geophys. 29 673–678.

    Article  Google Scholar 

  • Toth G, Sokolov I V, Gombosi T I, Chesney D R, Clauer C R et al. 2005 Space weather modeling framework: A new tool for the space science community; J. Geophys. Res. 110(A12) 12,226–12,237, https://doi.org/10.1029/2005JA011126.

    Article  Google Scholar 

  • Toth G, van der Holst B, Sokolov I V, De Zeeuw D L, Gombosi T I et al. 2012 Adaptive numerical algorithms in space weather modeling; J. Comput. Phys. 231(3) 870–903, https://doi.org/10.1016/j.jcp.2011.02.006.

  • Tsurutani B T and Gonzalez W D 1995 The efficiency of ‘viscous interaction’ between the solar wind and the magnetosphere during intense northward IMF events; Geophys. Res. Lett., https://doi.org/10.1029/95GL00205.

    Article  Google Scholar 

  • Tsurutani B T and Meng C I 1972 Interplanetary magnetic-field variations and substorm activity; J. Geophys. Res. 77 2964–2970, https://doi.org/10.1029/JA077i016p02964.

    Article  Google Scholar 

  • Tsurutani B T, Smith E J, Thorne R M, Anderson R R, Gurnett D A, Parks G K, Lin C S and Russell C T 1981 Wave–particle interaction at the magnetopause: Contributions to the dayside aurora; Geophys. Res. Lett., https://doi.org/10.1029/GL008i002p00183.

    Article  Google Scholar 

  • Tsurutani B T, Zhou X Y, Arballo J K, Gonzalez W D, Lakhina G S, Vasyliunas V, Pickett J S, Araki T, Yang H, Rostoker G, Hughes T J, Lepping R P and Berdichevsky D 2001 Auroral zone dayside precipitation during magnetic storm initial phase; J. Atmos. Terr. Phys. 63(5) 513–522, https://doi.org/10.1016/S1364-6826(00)00161-9.

    Article  Google Scholar 

  • Tsurutani B T, Hajra R, Echer E and Gjerloev J W 2015 Extremely intense (SML ≤ −2500 nT) substorms: Isolated events that are externally triggered; Ann. Geophys. Commun. 33 519–524, https://doi.org/10.5194/angeo-33-519-2015.

    Article  Google Scholar 

  • Wing S, Johnson J R, Chaston C C, Echim M, Escoubet C P, Lavraud B et al. 2014 Review of solar wind entry into and transport within the plasma sheet; Space Sci. Rev. 184(1–4) 33–86.

    Article  Google Scholar 

  • Wu C, Liou C K, Lepping R P, Le G and Meng C I 2002 Observations of substorms during prolonged northward interplanetary magnetic field; In: Sixth International Conference on substorms (ed.) R M Winglee, Univ. of Wash., Seattle, pp. 376–381.

  • Zhou X and Tsurutani B T 1999 Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks); Geophys. Res. Lett. 26 1097–1100, https://doi.org/10.1029/1999GL900173.

    Article  Google Scholar 

  • Zhou X and Tsurutani B T 2001 Interplanetary shock triggering of night-side geomagnetic activity: Substorms, pseudo breakups, and quiescent events; J. Geophys. Res., https://doi.org/10.1029/2000JA003028.

  • Zhou X and Tsurutani B T 2004 Dawn and dusk auroras caused by gradual, intense solar wind ram pressure events; J. Atmos. Terr. Phys. 66(2) 153–160, https://doi.org/10.1016/j.jastp.2003.09.008.

    Article  Google Scholar 

  • Zhou X Y, Strangeway R J, Anderson P C, Sibeck D G, Tsurutani B T, Haerendel G, Frey H U and Arballo J K 2003 Shock aurora: FAST and DMSP observations; J. Geophys. Res. 108(A4) 8019, https://doi.org/10.1029/2002JA009701.

    Article  Google Scholar 

Download references

Acknowledgements

This work is carried out at the Indian Institute of Geomagnetism and is supported by the Department of Science and Technology, Government of India. Authors extend their gratitude to Dr Harald U Frey, University of California, Berkeley, for processing the auroral images used in this paper and for his valuable comments on the manuscript. The authors would like to thank all data providers. The riometer datasets were obtained from Dr Antti Kero, Sodankylä Geophysical Observatory (https://www.sgo.fi/Data/Riometer/rioData.php) funded by the Tenure Track Project in Radio Science, NORSTAR Canada (http://aurora.phys.ucalgary.ca/norstar/index.html), and Australian Space Weather Services (https://www.sws.bom.gov.au/). IMAGE auroral data and 4D orbit viewer software are available on Space Physics Data Facility (http://spdf.gsfc.nasa.gov/ and https://spdf.gsfc.nasa.gov/data_orbits.html). The interplanetary magnetic field (IMF), solar wind data such as solar wind velocity and density, auroral electrojet index (AL), SYM-H and the satellite particle flux data of GOES-10 and LANL are obtained from the CDAWeb (https://cdaweb.gsfc.nasa.gov/cgi-bin/eval1.cgi). Plots of SML-LT were obtained from the SuperMAG website (http://supermag.jhuapl.edu/). Magnetometer datasets of various stations are obtained from the INTERMAGNET website (https://www.intermagnet.org/data-donnee/download-eng.php). The Kp index values for determining the quiet days are checked from the World Data Centre for Geomagnetism (WDC), Kyoto website (http://wdc.kugi.kyoto-u.ac.jp/). Also, the geomagnetic coordinates and magnetic local time (MLT) of different stations are obtained using the IGRF model (https://omniweb.gsfc.nasa.gov/vitmo/cgm.html). The BATS-R-US MHD simulation results have been obtained from the official website of the Community Coordinated Modeling Center (https://ccmc.gsfc.nasa.gov/requests/requests.php). Authors also extent their gratitude to Dr Michael Kosh, Chief Scientist & SRA Manager, SANSA (South African National Space Agency), for his support and assistance in providing Riometer data of SANAE station. Authors extend their gratitude to Prof. Ramaswamy Rajaram for his guidance and motivation throughout this work. Discussions with Prof. Akira Kadokura and Prof. Yoshimasa Tanaka, NIPR, Japan, are gratefully acknowledged. This work was also carried out using the SWMF/BATSRUS tools developed at the University of Michigan Center for Space Environment Modeling (CSEM) and made available through the NASA Community Coordinated Modeling Center (CCMC).

Author information

Authors and Affiliations

Authors

Contributions

Shipra Sinha: Conceptualization and framing of the work, data analysis, interpretation of the results, drafting of the original manuscript, and revision. Geeta Vichare: Conceptualization, interpretation of results, revision of manuscript and supervision. A K Sinha: Conceptualization, interpretation of results, revision of manuscript and supervision.

Corresponding author

Correspondence to Shipra Sinha.

Additional information

Communicated by T Narayana Rao

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Vichare, G. & Sinha, A.K. Differences in the characteristics and triggering mechanisms of two successive AL index onsets on 21st January 2005. J Earth Syst Sci 133, 94 (2024). https://doi.org/10.1007/s12040-024-02304-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-024-02304-4

Keywords

Navigation