Skip to main content
Log in

Neoarchean (ca. 2746–2501 Ma) magmatism: Evidence from east coast dykes of northeastern Southern Granulite Terrain, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We report new Sm–Nd whole rock-mineral isochron ages of 2514 ± 13 Ma (MSWD = 0.79) and 2651 ± 95 Ma (MSWD = 7.4) from two east coast dykes (ECD) of Southern Granulite Terrain (SGT), India. The ages from the representative mafic dyke samples correspond to the time of intrusion of ECD into the eastern part of SGT, indicating the presence of an older Archean crust in SGT near the Pondicherry coast. The Sm–Nd ages obtained from the present study, along with geochronological information from Singhbhum Craton, suggest a magmatic linkage between SGT (including southern Dharwar Craton) and Singhbhum Craton during the Neoarchean period. The older ages obtained from the mafic dykes of the present study are comparable with the Sm–Nd ages of older mafic dykes from Nuggihalli green stone belt of Western Dharwar Craton (WDC), Pb–Pb ages of mafic dykes from Singhbhum Craton of India and the U–Pb ages from Pilbara and Kaapvaal cartons. These comparisons unlock a clue to Neoarchean (2.8–2.5 Ga) paleogeographic reconstructions of Pilbara, Kaapvaal, Singhbhum cratons, northern SGT (including southern Dharwar Craton) and also provide an opportunity for wide windows of research to be undertaken considering the dykes from SGT.

Research highlights

  • Evidence of Neoarchean magmatism from East coast dykes near Pondicherry coast of Southern Granulite Terrain, India.

  • Sm–Nd ages of 2514 ± 13 and 2651 ± 95 Ma represent the time of intrusion of east coast dykes in Southern Granulite Terrain.

  • Isotope age indicates the presence of ~2.7 Ga older Archean crust near Pondicherry coast of Southern Granulite Terrain.

  • Geochronological studies reveal a magmatic linkage between Southern Granulite Terrain and Singhbhum craton.

  • The present study provides clues to the connection between Pilbara, Kaapvaal with SGT and Singhbhum cratons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amaldev T, Santosh M, Tang L, Baiju K R, Tsunogae T and Satyanarayanan M 2016 Mesoarchean convergent margin processes and crustal evolution: Petrologic, geochemical and zircon U–Pb and Lu–Hf data from the Mercara Suture Zone, southern India; Gondwana Res. 100(37) 182–204.

    Article  Google Scholar 

  • Anand R and Balakrishnan S 2010 Pb, Sr and Nd isotope systematics of metavolcanic rocks of the Hutti greenstone belt, Eastern Dharwar Craton: Constraints on age, duration of volcanism and evolution of mantle sources during Late Achaean; J. Asian Earth Sci. 39 1–11.

    Article  Google Scholar 

  • Balakrishna S, Rao M N and Venkatanarayana B 1979 Some geological studies on a dyke swarm near Bukkapatnam, Anantapur district, Andhra Pradesh, III Workshop on Status, Problems and Programmes in Cuddapah Basin; Indian Institute of Peninsular Geology Hyderabad, pp. 68–71.

    Google Scholar 

  • Balakrishnan S, Rajamani V and Hanson G N 1999 U–Pb ages for zircon and titanite from the Ramagiri area, southern India: Evidence for accretionary origin of the eastern Dharwar Craton during the late Archean; J. Geol. 107 69–86.

    Article  CAS  Google Scholar 

  • Basak S, Hasenstab E, Bhowmik S, Gerdes A, Dasgupta S, Münker C, Ravindra K G R and Chakraborty S 2023 Thermal and chemical evolution of an Archean collision zone: Insights from P-T-t history of mafic granulites from the Coorg Block, S. India; J. Petrol. 64, https://doi.org/10.1093/petrology/egad026.

  • Bhaskar Rao Y J, Chetty T R K, Janardhan A S and Gopalan K 1996 Sm–Nd and Rb–Sr ages and P–T history of the Archaean Sittampundi and Bhavani layered meta anorthosite complexes in the Cauvery shear zone: Evidence for Neoproterozoic reworking of Archaean crust; Contrib. Mineral. Petrol. 96 663–676.

    Google Scholar 

  • Blake T S, Buick R, Brown S J A and Barley M E 2004 Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: Constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates; Precamb. Res. 133 143–173.

    Article  CAS  Google Scholar 

  • Butler R F 1992 Paleomagnetism: Magnetic domains to geologic terranes; Blackwell Science, Oxford, UK.

    Google Scholar 

  • Chalapathi Rao N V, Gibson S A, Pyle D M, Dickin A P and Day J 2005 Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar Craton, southern India: A reply; J. Petrol. 46 1081–1084.

    Article  Google Scholar 

  • Condie K C, Allen P and Narayana B L 1982 Geochemistry of the Archaean low- to high-grade transition in southern India; Contrib. Mineral. Petrol. 81 157–167.

    Article  CAS  Google Scholar 

  • Dalai T K, Krishnaswami S and Kumar A 2003 Sr and 87Sr/86Sr in the Yamuna River System in the Himalaya: Sources, fluxes, and controls on Sr isotope composition; Geochim. Cosmochim. Acta 67(16) 2931–2948.

    Article  CAS  Google Scholar 

  • Dash J K 2012 Geochemical and geochronological studies of mafic dykes occurring in the northeastern part of the Southern Granulite Terrain, India; Unpublished PhD Thesis Pondicherry University, 113p.

  • Dash J K, Pradhan S K, Bhutani R, Balakrishnan S, Chandrasekaran G and Basavaiah N 2013 Paleomagnetism of ca. 2.3 Ga mafic dyke swarms in the northeastern part of Southern Granulite Terrain, India: Constraints on position and extent of Dharwar Craton in Paleoproterozoic; Precamb. Res. 228 164–176.

    Article  CAS  Google Scholar 

  • de Kock M O, Evans D A D, Dorland H C, Beukes N J and Gutzmer J 2006 Paleomagnetism of the lower two unconformity-bounded sequences of the Waterberg Group, South Africa: Towards a better-defined apparent polar wander path for the Paleoproterozoic Kaapvaal Craton; S. Afr. J. Geol. 109 157–182.

    Article  Google Scholar 

  • Denyszyn S W, Feinberg J M, Renne P R and Scott G R 2013 Revisiting the age and paleomagnetism of the Modipe Gabbro of South Africa; Precamb. Res. 238 176–185.

    Article  CAS  Google Scholar 

  • Faure G 1986 Principles of isotope geology; 2nd edn, Wiley, New York.

    Google Scholar 

  • French J E and Heaman L M 2010 Precise U–Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar Craton, India: Implications for the existence of the Neoarchean supercraton Sclavia; Precamb. Res. 183 416–441.

    Article  CAS  Google Scholar 

  • Geological Survey of India 1981 Geological and Mineral Map of Karnataka and Goa; 1:500,000 Scales, Hyderabad.

  • Ghosh J G, De Wit M J and Zartman R E 2004 Age and tectonic evolution of Neoproterozoic ductile shear zones in the southern granulite terrain of India, with implications for Gondwana studies; Tectonics 23 TC3006.

  • Glorie S, De Grave J, Singh T, Payne J L and Collins A S 2014 Crustal root of the Eastern Dharwar Craton: Zircon U–Pb age and Lu–Hf isotopic evolution of the East Salem Block, southeast India; Precamb. Res. 249 229–246.

    Article  CAS  Google Scholar 

  • Govindaraju K 1994 Compilation of working values and sample description for 383 geostandards; Geostandards Newslett. 18 1–158.

    Article  CAS  Google Scholar 

  • Halls H C 1982 The importance and potential of mafic dyke swarms in studies of geodynamic processes; Geosci. Canada 9 145–154.

    Google Scholar 

  • Halls H C, Kumar A, Srinivasan R and Hamilton M A 2007 Paleomagnetism and U–Pb geochronology of easterly trending dykes in the Dharwar Craton, India: Feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga; Precamb. Res. 155 47–68.

    Article  CAS  Google Scholar 

  • Heaman L M and Tarney J 1989 U–Pb baddeleyite ages for the Scourie dyke swarm, Scotland: Evidence for two distinct intrusion events; Nature 340 705–708.

    Article  CAS  Google Scholar 

  • Hofmann A, Jodder J and Xie H 2016 On the remarkable similarity of the Archaean geological evolution of the Singhbhum and Kaapvaal cratons; Abstract, 35th International Geological Congress South Africa.

  • Hunt C P, Moskowitz B M and Banerjee S K 1995 Magnetic properties of rocks and minerals; In: Rock physics and phase relations: A handbook of physical constants; American Geophysical Union, pp. 189–203.

  • Ikramuddin M 1968 Geology of the area around Bidadi–Harohalli, Bangalore district, Mysore State; Unpublished PhD thesis, Karnataka University.

  • Ikramuddin M and Stueber A M 1976 Rb–Sr ages of Precambrian dolerite and alkaline dikes, southeast Mysore State, India; Lithos 9 235–241.

    Article  CAS  Google Scholar 

  • Jäger E, Niggli E and Wenk E 1967 Rb–Sr Altersbestimmungen an Glimmern der Zentralalpen; Beitr Geol. Karte Schweiz Neue Folge Lieferungen 134.

  • John M M, Balakrishnan S and Bhadra B K 2005 Contrasting metamorphism across Cauvery Shear Zone, south India; J. Earth Syst. Sci. 114 143–158.

    Article  CAS  Google Scholar 

  • Joseph M 1994 Geochemistry, petrogenesis and palaeomagnetism of the dyke swarms of Tiruvannamalai area, Tamil Nadu and the lithospheric processes in south India; PhD thesis, Cochin University of Science and Technology, 170p.

  • Khanna T C and Jaffri S H 2021 ~2.5 Ga asthenospheric-melt impregnated continental crust: Implications for sporadically eroded lithosphere beneath the Dharwar Craton, India; Precamb. Res. 358 106–184.

  • Kumar A and Bhalla M S 1983 Palaeomagnetic and igneous activity of the area adjoining the south-western margin of the Cuddapah basin, India; Geophys. J. Int. 73 27–37.

    Article  Google Scholar 

  • Kumar A, Padma Kumari V M, Dayal A M, Murthy D S N and Gopalan K 1993 Rb–Sr ages of Proterozoic Kimberlites of India: Evidence for contemporaneous emplacement; Precamb. Res. 62 227–237.

    Article  CAS  Google Scholar 

  • Kumar A, Hamilton M A and Halls H C 2012 A paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India; Geochem. Geophys. Geosyst. 13 Q02011, https://doi.org/10.1029/2011GC003926.

  • Kumar A, Parashuramulu V, Shankar R and Besse J 2017 Evidence for a Neoarchean LIP in the Singhbhum Craton, eastern India: Implications to Vaalbara supercontinent; Precamb. Res. 292 163–174.

    Article  CAS  Google Scholar 

  • Manglik A 2006 Mantle heat flow and thermal structure of the northern block of Southern Granulite Terrain, India; J. Geodyn. 41 510–519.

    Article  Google Scholar 

  • McElhinny M W and McFadden P L 2000 Paleomagnetism: Continents and oceans; Academic Press London, 386p.

  • McFadden P L 1990 A new fold test for palaeomagnetic studies; Geophys. J. Int. 103 163–169.

    Article  Google Scholar 

  • Meert J G 2012 What's in a name? The Columbia (Palaeopangea/Nuna) supercontinent; Gondwana Res. 21 987–993.

  • Meert J G 2014 Strange attractors, spiritual interlopers and lonely wanderers: The search for pre-Pangæan supercontinents; Geosci. Front. 5 155–166.

    Article  Google Scholar 

  • Meert J G, Pandit M K, Pradhan V R, Jonathan B, Robert S, Misty S, Brittany N and Jennifer G 2010 Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey; J. Asian Earth Sci. 39 483–515.

    Article  Google Scholar 

  • Miller S R, Meert J G, Pivarunas A F, Sinha A K, Pandit M K, Mueller P A and Kamenov G D 2023 The drift history of the Dharwar Craton and India from 2.37–1.01 Ga with refinements for an initial Rodinia configuration; Geosci. Front., https://doi.org/10.1016/j.gsf.2023.101581.

  • Mishra S S, Boraiaha C K, Sláma J and Chandan R 2023 Zircon U–Pb and trace element constraints on the evolution of the Tonian (829–831 Ma) alkaline plutons within the Mercara Shear Zone, south India; Geochemistry, https://doi.org/10.1016/j.chemer.2023.126000.

    Article  Google Scholar 

  • Mohan A and Jayananda M 1999 Metamorphism and isotopic evolution of granulites of southern India: Reference to Neoproterozoic crustal evolution; Gondwana Res. 2 251–262.

  • Murthy N G K 1987 Mafic dyke swarms of the Indian shield; In: Mafic dyke swarms (eds) Halls H C and Fahrig W F, Geol. Assoc. Canada 34 393–400.

  • Murthy Y G K, Babu Rao V, Gupta Sharma D, Rao J M, Rao M N and Bhattacharjee S 1987 Tectonic, petrochemical and geophysical studies of mafic dyke swarms around the Proterozoic Cuddapah basin, South India; In: Mafic dyke swarms (eds) Halls H C and Fahrig W F, Geol. Assoc. Canada 34 303–316.

  • Nelson D R, Bhattacharya H N, Thern E R and Altermann W 2014 Geochemical and ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India; Precamb. Res. 255 412–432.

    Article  CAS  Google Scholar 

  • Noack N M, Kleinschrodt R, Kirchenbaur M, Fonseca R O C and Munker C 2013 Lu–Hf isotope evidence for Paleoproterozoic metamorphism and deformation of Archean oceanic crust along the Dharwar Craton margin, southern India; Precamb. Res. 233 206–222.

    Article  CAS  Google Scholar 

  • Pivarunas A, Meert J G, Pandit M K and Sinha A 2018 Paleomagnetism and geochronology of mafic dykes from the Southern Granulite Terrane, India: Expanding the Dharwar Craton southward; Tectonophys., https://doi.org/10.1016/j.tecto.2018.01.024.

  • Plavsa D, Collins A S, Foden J F, Kropinski L, Santosh M, Chetty T R K and Clark C 2012 Delineating crustal domains in Peninsular India: Age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block; Precamb. Res., https://doi.org/10.1016/j.precamres.2011.12.013.

  • Pradhan S K 2012 Palaeomagnetic and geochronological studies on the basaltic dykes from northeastern part of the Southern Granulite Terrain, India: Significance to early Proterozoic continental reconstruction; Unpublished PhD thesis, Pondicherry University.

  • Pradhan V R, Pandit M K and Meert J G 2008 A cautionary note on the age of the Paleomagnetic pole obtained from the Harohalli Dyke swarms, Dharwar Craton, southern India; In: Indian dykes (eds) Rajesh K Srivastava, Ch Sivaji and Chalapathi Rao N V, Narosa Publishing House Pvt. Ltd. New Delhi, pp. 1–14.

  • Pradhan V R, Meert J G, Pandit M K, Kamenov G, Gregory L C and Malone S 2010 India’s changing place in global Proterozoic reconstructions: New geochronologic constraints on key paleomagnetic poles from the Dharwar and Aravalli/Bundelkhand Cratons; J. Geodyn. 50 224–242.

    Article  Google Scholar 

  • Radhakrishna T 2009 Precambrian mafic magmatism in South Indian Granulite Terrain; J. Geol. Soc. India 73 131–142.

    Article  CAS  Google Scholar 

  • Radhakrishna T and Joseph M 1996 Proterozoic palaeomagnetism of the mafic dyke swarms in the high-grade region of southern India; Precamb. Res. 76 31–46.

    Article  CAS  Google Scholar 

  • Radhakrishna T and Joseph M 1998 Geochemistry and petrogenesis of the Proterozoic dykes in Tamil Nadu, south India: Implications for the continental lithosphere; Int. J. Earth Sci. 87 268–282.

  • Radhakrishna T, Gopakumar K, Murali A V and Mitchell J G 1991 Geochemistry and petrogenesis of Proterozoic mafic dykes in north Kerala, southwestern Indian shield primary results; Precamb. Res. 49 235–244.

    Article  CAS  Google Scholar 

  • Radhakrishna T, Dallmeyer R D and Mathew J 1994 Palaeomagnetism and 36Ar/40Ar vs. 39Ar/40Ar isotope correlation ages of dyke swarms in central Kerala, India: Tectonic implications; Earth Planet. Sci. Lett. 121 213–226.

    Article  CAS  Google Scholar 

  • Raith M, Hoernes S, Stahle H J and Klatt E 1982 Contrasting mechanisms of charnockite formation in the amphibolite to granulite transition zones of southern India; In: Fluid Movements Element Transport and the Composition of the Deep Crust (ed.) Bridgewater D, NATO ASI Series C 281 9–38.

  • Rao J M, Rao G V S P and Patil S K 1990 Geochemical and paleomagnetic studies on the middle Proterozoic Karimnagar mafic dyke swarm, India; In: Rotterdam mafic dykes and emplacement mechanisms (eds) Parker A J, Rickwood D H and Tucker D H, pp. 373–382.

  • Renjith M L, Santosh M, Satyanarayanan M, Subba Rao D V and Li Tang 2016 Multiple rifting and alkaline magmatism in southern India during Paleoproterozoic and Neoproterozoic; Tectonophys. 680 233–253.

    Article  CAS  Google Scholar 

  • Rogers J J W 1996 A history of the continents in the past three billion years; J. Geol. 104 91–107.

    Article  Google Scholar 

  • Rogers J J W and Santosh M 2002 Configuration of Columbia, a Mesoproterozoic supercontinent; Gondwana Res. 5 5–22.

  • Rogers J J and Santosh M 2003 Supercontinents in earth history; Gondwana Res. 6 357–368.

  • Rollinson H R 1993 Using geochemical data: Evaluation, presentation and interpretation; Longman Singapore Publishers (Pte) Ltd., 352p.

  • Roy A, Sarkar A, Jeyakumar S, Aggarwal S K, Ebihara M and Satoh H 2004 Late Archaean mantle metasomatism below eastern Indian craton: Evidence from trace elements, REE geochemistry and Sr–Nd–O isotope systematics of ultramafic dykes; J. Earth Syst. Sci. 113 649–665.

    Article  CAS  Google Scholar 

  • Samal A K, Srivastava R K, Ernst R E and Söderlund U 2019 Neoarchean–Mesoproterozoic mafic dyke swarms of the Indian Shield mapped using Google Earth™ Images and ArcGIS™ and links with large igneous provinces; Dyke Swarms of the World: A Modern Perspective, pp. 335–390.

  • Santosh M, Shaji E, Tsunogae T, Ram Mohan M, Satyanarayanan M and Horie K 2013 Suprasubduction zone ophiolite from Agali hill: Petrology, zircon SHRIMP U–Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India; Precamb. Res. 231 301–324.

    Article  CAS  Google Scholar 

  • Satyanarayana K V V, Arora B R and Janardhan A S 2003 Rock magnetism and paleomagnetism of the Oddanchatram anorthosite, Tamilnadu, South India; Geophys. J. Int. 155 1081–1092.

    Article  Google Scholar 

  • Smith J P, Bullen T D, Brabander D J and Olsen C R 2009 Strontium isotope record of seasonal scale variations in sediment sources and accumulation in low-energy, sub-tidal areas of the lower Hudson River estuary; Chem. Geol. 264 375–384.

    Article  CAS  Google Scholar 

  • Söderlund U, Charlotte Möllerersson J, Johansson L and Whitehouse M 2002 Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: Ion microprobe evidence for 1.46–1.42 and 0.98–0.96 Ga reworking; Precamb. Res. 113 193–225.

    Article  Google Scholar 

  • Srivastava S K and Kanishkan B 1977 Geology of parts of Bhavani and Gopichettipalaiyam taluks, Salem District, Tamil Nadu, Unpublished progress report GSI field season 1975–76.

  • Strik G, Blake T S, Zegers T E, White S H and Langereis C G 2003 Palaeomagnetism of flood basalt in the Pilbara Craton, Western Australia: Late Archaean continental drift and the oldest known reversal of the geomagnetic field; J. Geophys. Res. 108, https://doi.org/10.1029/2003JB002475.

  • Subramanian K S and Selvan T A 2001 Geology of Tamil Nadu and Pondicherry; Geol. Soc, India, 192p.

    Google Scholar 

  • Talukdar M, Sarkar T, Sengupta P and Mukhopadhyay D 2022 The Southern Granulite Terrane, India: The saga of over 2 billion years of Earth's history; Earth-Sci. Rev. 232, https://doi.org/10.1016/j.earscirev.2022.104157.

  • Venkatesh A S, Poornachandra Rao G V S, Prasada Rao N T V and Bhalla M S 1987 Palaeomagnetic and geochemical studies on dolerite dykes from Tamil Nadu, India; Precamb. Res. 34 291–310.

    Article  CAS  Google Scholar 

  • Weaver B L 1980 Rare earth element geochemistry of Madras granulites; Contrib. Mineral. Petrol. 71 271–279.

    Article  CAS  Google Scholar 

  • Wingate M T D 1998 A palaeomagnetic test of the Kaapvaal–Pilbara (Vaalbara) connection at 2.78 Ga; S. Afr. J. Geol. 4 257–274.

    Google Scholar 

  • Wu W, Xu S, Yang J, Yin H and Tao X 2009 Sr fluxes and isotopic compositions in the headwaters of the Yangtze River, Tongtian River and Jinsha River originating from the Qinghai Tibet Plateau; Chem. Geol. 260 63–72.

    Article  CAS  Google Scholar 

  • Yang Q-Y, Santosh M, Pradeepkumar A P, Shaji E, Prasanth R S and Dhanil Dev S G 2015 Crustal evolution in the western margin of the Nilgiri Block, southern India: Insights from zircon U–Pb and Lu–Hf data on Neoarchean magmatic suite; J. Asian Earth Sci. 113 766–777.

    Article  Google Scholar 

  • Yellappa T, Santosh M, Chetty T R K, Kwon S, Park C, Nagesh P, Mohanty D P and Venkatasivappa V 2012 A Neoarchean dismembered ophiolite complex from southern India: Geochemical and geochronological constraints on its suprasubduction origin; Gondwana Res. 21 246–265.

  • Zachariah J K, Hanson G N and Rajamani V 1995 Postcrystallization disturbance in the neodymium and lead isotope systems of metabasalts from the Ramagiri schist belt, southern India; Geochim. Cosmochim. Acta 59 3189–3203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out at the National Facility for Isotope Geosciences, Department of Earth Sciences, Pondicherry University, India. The thorough and thoughtful review by N V Chalapathi Rao and the anonymous reviewer is duly acknowledged. The authors acknowledge funding by the Department of Science and Technology, India. SKP and JKD thank Pondicherry University for the financial assistance. SKP thanks the Director, IIG, for his constant encouragement, and permission to publish this work. SKP also thanks Gautam Gupta, Head, KSKGRL; E Karthikeyan and D S M Pdah for their support.

Author information

Authors and Affiliations

Authors

Contributions

Sujit K Pradhan: Conceptualization, field study, geochronological data curation, writing – review and editing of the original draft manuscript. Jitendra K Dash: Conceptualization, field study, geochemical data curation, writing – review and editing. S Balakrishnan: Conceptualization, field study, supervision, writing – review and editing. R Bhutani: Conceptualization, field study, supervision, writing – review and editing.

Corresponding author

Correspondence to Sujit K Pradhan.

Additional information

Communicated by N V Chalapathi Rao

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S.K., Dash, J.K., Balakrishnan, S. et al. Neoarchean (ca. 2746–2501 Ma) magmatism: Evidence from east coast dykes of northeastern Southern Granulite Terrain, India. J Earth Syst Sci 133, 91 (2024). https://doi.org/10.1007/s12040-024-02300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-024-02300-8

Keywords

Navigation