Skip to main content

Advertisement

Log in

Evaluation of seismic hazard of Uttarakhand State of India through deterministic approach

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Uttarakhand is one of the most seismically active states of India. In this study, the seismic hazard map of Uttarakhand has been developed through deterministic seismic hazard analysis approach. Seismotectonic map with various geological discontinuities has been prepared. A homogenous earthquake catalogue for moment magnitude has been prepared for the duration of 1953–2020 and the past seismic data have been checked for completeness with regard to time and magnitude. Maximum potential magnitude was then assessed for the seismic sources. Concept of logic tree with four different ground motion prediction models was employed for the assessment of hazards. For developing the microzonation map, the state was divided into several grid points (0.1°×0.1°), and the seismic hazard was estimated in terms of peak ground acceleration (PGA) for each of the grid points. The estimated PGA values were found to be varying from 0.12 g to as high as 0.70 g. For northern regions, Main Central Thrust, Sundernagar and Ropar faults are critical, whereas for southern regions, thrusts TT18, TT23, TT19, TT23 and faults F37, F36, and F31 are significant. It has also been observed that the current Indian standard underestimates the response spectrum values for most regions of the state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Anbazhagan P, Bajaj K and Patel S 2015 Seismic hazard maps and spectrum for Patna considering region specific seismotectonic parameters; Nat. Hazards 78 1163–1195, https://doi.org/10.1007/s11069-015-1764-0.

    Article  Google Scholar 

  • Anbazhagan P, Kumar A and Sitharam T G 2013 Ground motion prediction equation considering combined dataset of recorded and simulated ground motions; Soil Dyn. Earthq. Eng. 53 92–108, https://doi.org/10.1016/j.soildyn.2013.06.003.

    Article  Google Scholar 

  • Baro O and Kumar A 2017 Seismic source characterisation for the Shillong Plateau in Northeast India; J. Seismol. 21(5) 1229–1249, https://doi.org/10.1007/s10950-017-9664-2.

    Article  Google Scholar 

  • Bhatia S C, Kumar M R and Gupta H K 1999 A probabilistic seismic hazard map of India and adjoining regions; Ann. Geophys. 42 1153–1164, https://doi.org/10.4401/ag-3777.

  • Bommer J J, Douglas J, Scherbaum F, Cotton F, Bungum H and Fah D 2010 On the selection of ground motion prediction equations for seismic hazard analysis; Seismol. Res. Lett. 81(5) 783–793, https://doi.org/10.1785/gssrl.81.5.783.

    Article  Google Scholar 

  • Das R, Wason H R and Sharma M L 2011 Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude; Nat. Hazards 59 801–810, https://doi.org/10.1007/s11069-011-9796-6.

    Article  Google Scholar 

  • Dasgupta S, Pande P, Ganguly D, Iqbal Z, Sanyal K, Venkatraman N V, Dasgupta S, Sural B, Harendranath L, Mazumdar K, Sanyal S, Roy A, Das L K, Misra P S and Gupta H 2000 Seismotectonic atlas of India and its environs; Geol. Surv. India Spec. Publ. 59 87.

    Google Scholar 

  • Deniz A and Yucemen M S 2010 Magnitude conversion problem for the Turkish earthquake data; Nat. Hazards 55(2) 333–352, https://doi.org/10.1007/s11069-010-9531-8.

    Article  Google Scholar 

  • ESRI 2016 ArcGIS Release 10.5. Environmental Systems Research Institute (ESRI), Redlands, California.

  • Eurocode-8 2005 BS-EN 1998–1: Design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings; European Committee for Standardization, Brussels.

    Google Scholar 

  • Hanks T C 1982 f max; Bull. Seismol. Soc. Am. 72 1869–1879.

    Article  Google Scholar 

  • Huang J and Dapeng Z 2006 High-resolution mantle tomography of China and surrounding regions; J. Geohys. Res. Solid Earth 111(B9), https://doi.org/10.1029/2005JB004066.

  • IS 1893 2016 Indian standard criteria for earthquake resistant design of structures. Part 1: General provisions and buildings; Bureau of Indian Standards, New Delhi.

  • Kanno T, Narita A, Morikawa N, Fujiwara H and Fukushima Y 2006 A new attenuation relation for strong ground motion in Japan based on recorded data; Bull. Seismol. Soc. Am. 96(3) 879–897, https://doi.org/10.1785/0120050138.

    Article  Google Scholar 

  • Khattri K M and Tyagi A K 1983 Seismicity patterns in the Himalayan plate boundary and identification of the areas of high seismic potential; Tectonophys. 96 281–297, https://doi.org/10.1785/0120050138.

    Article  Google Scholar 

  • Khattri K N, Rogers A M, Perkins D M and Algermissen S T 1984 A seismic hazard map of India and adjacent areas; Tectonophys. 108 93–134, https://doi.org/10.1016/0040-1951(84)90156-2.

    Article  Google Scholar 

  • Kramer S L 1996 Geotechnical earthquake engineering; Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Kumar P, Kumar A and Sinvhal A 2011 Assessment of seismic hazard in Uttarakhand Himalaya; Disaster Prev. Manag. 20 531–542.

    Article  Google Scholar 

  • Mahajan A K, Thakur V C, Sharma M L and Chauhan M 2010 Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India; Nat. Hazards 53 443–457, https://doi.org/10.1007/s11069-009-9439-3.

    Article  Google Scholar 

  • Mark R K 1977 Application of linear statistical models of earthquake magnitude versus fault length in estimating maximum expectable earthquakes; Geology 5(8) 464–466, https://doi.org/10.1130/0091-7613(1977)5%3c464:AOLSMO%3e2.0.CO;2.

    Article  Google Scholar 

  • MATLAB Programming Version (R2019a) The MathWorks Inc Natick, Massachusetts, United States.

  • Mignan A, Werner M J, Wiemer S, Chen C C and Wu Y M 2011 Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs; Bull. Seismol. Soc. Am. 101(3) 1371–1385, https://doi.org/10.1785/0120100223.

    Article  Google Scholar 

  • Mishra O P 2020 Seismic microzonation study of south Asian cities and its implications to urban risk resiliency under climate change scenario; Int. J. Geosci. 11 197–237, https://doi.org/10.4236/ijg.2020.114012.

    Article  Google Scholar 

  • Mishra O P, Mandal H S, Singh P, Mahato R, Gera S K, Kumar V, Sharma B, Shekhar S, Gusain P, Prajapati S K and Tiwari A 2022 Seismic microzonation of Indian cities and strategy for safer design of structures; In: Social and Economic Impact of Earth Sciences, pp. 393–419.

  • Mishra O P, Singh P, Ram B, Gera S K, Singh O P, Mukherjee K K, Chakrabortty G K, Chandrasekhar S V N, Selinraj A and Som S K 2020 Seismic site specific study for seismic microzonation: A way forward for risk resiliency of vital infrastructure in Sikkim, India; Int. J. Geosci. 11 125–144, https://doi.org/10.4236/ijg.2020.113008.

    Article  Google Scholar 

  • Naik N and Choudhury D 2015 Deterministic seismic hazard analysis considering different seismicity levels for the state of Goa, India; Nat. Hazards 75(1) 557–580, https://doi.org/10.1007/s11069-014-1346-6.

    Article  Google Scholar 

  • Nath S K and Thingbaijam K K S 2012 Probabilistic seismic hazard assessment of India; Seismol. Res. Lett. 83 135–149, https://doi.org/10.1785/gssrl.83.1.135.

    Article  Google Scholar 

  • Nath S K, Shukla K and Vyas M 2008 Seismic hazard scenario and attenuation model of the Garhwal Himalaya using near-field synthesis from weak motion seismometry; J. Earth Syst. Sci. 117 649–670, https://doi.org/10.1007/s12040-008-0062-6.

    Article  Google Scholar 

  • NDMA 2010 Development of probabilistic seismic hazard map of India; Technical report by National Disaster Management Authority, Government of India, New Delhi.

  • Nowroozi A A 1985 Empirical relations between magnitudes and fault parameters for earthquakes in Iran; Bull. Seismol. Soc. Am. 75 1327–1338, https://doi.org/10.1785/BSSA0750051327.

    Article  Google Scholar 

  • Papageorgiou A S and Aki K 1983 A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong around motion. I. Description of the model; Bull. Seismol. Soc. Am. 73 693–722.

    Article  Google Scholar 

  • Puri N and Jain A 2016 Deterministic seismic hazard analysis for the State of Haryana, India; Indian Geotech. J. 46(2) 164–174, https://doi.org/10.1007/s40098-015-0167-1.

    Article  Google Scholar 

  • Rajendran K, Rajendran C P, Jain S K, Murty C V R and Arlekar J N 2000 The Chamoli earthquake, Garhwal Himalaya: Field observations and implications for seismic hazard; Curr. Sci. 78 45–51.

    Google Scholar 

  • Rout M M and Das J 2018 Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method); Nat. Hazards 93 967–985.

    Article  Google Scholar 

  • Rout M M, Das J and Das R 2015 Probabilistic seismic hazard assessment of NW and central Himalayas and the adjoining region; J. Earth Syst. Sci. 124 577–586.

    Article  Google Scholar 

  • Sabetta F, Lucantoni A, Bungum H and Boomer J J 2005 Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights; Soil Dyn. Earthq. Eng. 25 317–329, https://doi.org/10.1016/j.soildyn.2005.02.002.

    Article  Google Scholar 

  • Schulte S M and Mooney W D 2004 An updated earthquake catalog for stable continental regions, Intraplate earthquakes (495-2002); United States Geological Survey, http://earthquake.usgs.gov/research/data.

  • Sharma M L 1998 Attenuation relationship for estimation of peak ground horizontal acceleration using data from strong-motion arrays in India; Bull. Seismol. Soc. Am. 88(4) 1063–1069.

    Article  Google Scholar 

  • Sharma M L and Lindholm C 2012 Earthquake hazard assessment for Dehradun, Uttarakhand, India, including a characteristic earthquake recurrence model for the Himalaya Frontal Fault (HFF); Pure Appl. Geophys. 169(9) 1601–1617.

    Article  Google Scholar 

  • Sinha R and Sarkar R 2020 Seismic hazard assessment of Dhanbad city, India by deterministic approach; Nat. Hazards 103 1857–1880, https://doi.org/10.1007/s11069-020-04059-9.

    Article  Google Scholar 

  • Stepp J C 1972 Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard; In: Proceeding of the International Conference on Microzonation, pp. 897–910.

  • Vanadana and Mishra O P 2019 Source characteristics of the NW Himalaya and its adjoining region: Geodynamical implications; Phys. Earth Planet. Inter. 294 106277, https://doi.org/10.1016/j.pepi.2019.106277.

  • Wells D L and Coppersmith K J 1994 New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement; Bull. Seismol. Soc. Am. 84(4) 974–1002, https://doi.org/10.1785/BSSA0840040974.

    Article  Google Scholar 

  • Wiemer S and Wyss M 2000 Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan; Bull. Seismol. Soc. Am. 90(4) 859–869, https://doi.org/10.1785/0119990114.

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support provided by MHRD, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

VS was responsible for the collection of data, finalisation of methodology, development of codes, analyses of data, preparation of maps and writing the manuscript. RS was responsible for conceptualisation, finalisation of methodology, supervision, manuscript review and editing. Both VS and RS reviewed the manuscript.

Corresponding author

Correspondence to Rajib Sarkar.

Additional information

Communicated by Munukutla Radhakrishna

Appendix

Appendix

Sl. no.

Source

Length (km)

Observed Mw

M 1,max

M 2,max

M 3,max

M 4,max

REG-A

1

F10 – Kaurik Fault

145.96

6.7

7.4

4.8

7.6

7.1

2

F11

73.54

6.8

6.5

4.5

7.3

6.7

3

F12

31.15

6.8

6.2

4.5

7.3

6.2

4

F13 – Sundernagar Fault

118.29

6.7

7.8

5.1

8.0

6.9

5

F14

17.014

5.5

6.1

3.9

6.4

5.9

6

F15 – Ropar Fault

49.50

5.6

7.6

4.5

7.2

6.5

7

F16

34.14

3.0

6.3

2.7

4.7

6.3

8

F8 – Karakoram Fault

323.15

6.7

7.6

4.8

7.6

7.5

9

F9

25.73

5.0

6.2

3.6

6.0

6.1

10

TT1

112.00

5.5

6.6

3.9

6.4

6.9

11

TT2 – Jwalamukhi Thrust

346.00

6.6

8.1

5.0

7.9

7.5

12

TT3

217.00

6.8

6.8

4.5

7.3

7.2

13

TT4

75.00

6.8

6.5

4.5

7.3

6.7

14

TT5

237.00

5.9

6.8

4.1

6.6

7.3

15

TT6

96.00

5.9

6.6

4.1

6.6

6.8

16

TT7 – MCT1

143.00

6.8

7.9

5.1

8.1

7.1

17

TT8

561.00

6.8

7.1

4.5

7.3

7.8

18

TT9

62.00

6.8

6.4

4.5

7.3

6.6

19

TT10

325.00

5.5

6.9

3.9

6.4

7.5

20

TT11

88.00

5.2

6.5

3.7

6.2

6.8

21

TT12

73.00

5.2

6.5

3.7

6.2

6.7

22

TT13

122.00

5.5

6.6

3.9

6.4

7.0

23

TT14 – Drang Thrust

375.00

5.5

7.6

4.5

7.2

7.6

24

TT15

169.00

5.2

6.7

3.7

6.2

7.1

25

TT16

40.00

3.3

6.3

2.8

4.9

6.4

26

TT17 – Ramgarh Thrust

542.00

6.8

7.7

5.1

8.1

7.8

27

TT18

231.00

6.1

6.8

4.2

6.8

7.3

28

TT20 – MFT1

137.00

6.6

7.3

5.0

7.9

7.0

29

TT21

107.00

3.5

6.6

2.9

5

6.9

30

TT22

3.00

6.6

5.6

4.4

7.1

5.0

31

TT23

185.00

5.3

6.8

3.8

6.2

7.2

32

TT24

188.00

5.3

6.8

3.8

6.2

7.2

33

TT25 – Maroli Thrust

176.00

6.6

7.4

4.8

7.6

7.2

34

TT26 – MCT2

435.00

6.8

8.2

5.1

8.1

7.6

35

TT27

8.00

6.8

5.9

4.0

6.6

5.5

36

F29

84.00

6.9

6.5

4.6

7.3

6.8

37

F30

41.00

6.9

6.3

4.6

7.3

6.4

38

F31

27.00

6.9

6.2

4.6

7.3

6.2

39

F32

47.00

6.9

6.4

4.6

7.3

6.5

40

F33

120.00

6.8

6.6

4.5

7.3

6.9

41

F34

150.00

6.8

6.7

4.5

7.3

7.1

42

F35

3.00

6.8

5.6

3.4

5.7

5.0

43

F36

133.00

6.6

6.7

4.4

7.1

7.0

44

F37

207.00

6.1

6.8

4.2

6.8

7.2

45

F38

73.00

6.1

6.5

4.2

6.8

6.7

46

F39

90.00

6.1

6.5

4.2

6.8

6.8

47

F40

49.00

6

6.4

4.1

6.7

6.5

48

F42

71.00

6.1

6.5

4.2

6.8

6.7

49

F96

31.00

5.2

6.2

3.7

6.2

6.2

50

F97 – Keytang

184.00

6.7

7.4

4.8

7.6

7.2

51

F98

94.00

6.7

6.6

4.5

7.2

6.8

52

F99

5.00

5.9

5.7

3.6

5.9

5.3

53

F100

127.00

6.7

6.6

4.5

7.2

7.0

54

F101

6.00

5.9

5.8

3.6

5.9

5.4

55

F102

104.00

5.2

6.6

3.7

6.2

6.9

56

F103

28.00

3.5

6.2

2.9

5

6.2

57

F104

30.00

5.2

6.2

3.7

6.2

6.2

58

F105

10.00

4.8

5.9

3.5

5.9

5.6

59

F106

170.00

5.5

6.7

3.9

6.4

7.1

60

F107

119.00

5.5

6.6

3.9

6.4

6.9

61

F108

50.00

5.5

6.4

3.9

6.4

6.5

62

F109

14.00

5.5

6

3.9

6.4

5.8

63

F92

21.00

3.6

5.6

3

5.1

6.0

REG-C

64

F91

30.00

4.7

5.7

3.5

5.8

6.2

65

F87

37.00

5.3

5.7

3.8

6.2

6.3

66

F88

41.00

5.3

5.8

3.8

6.2

6.4

67

FF19

43.70

5.6

5.8

3.9

6.4

6.4

68

F84

54.00

5.3

5.8

3.8

6.2

6.5

69

F85

57.00

5.3

5.8

3.8

6.2

6.6

70

F86

58.00

5.3

5.8

3.8

6.2

6.6

71

FF13

64.92

6

5.8

4.1

6.7

6.6

72

F81

70.00

5.3

5.9

3.8

6.2

6.7

73

F82

74.00

5.3

5.9

3.8

6.2

6.7

74

F77

76.00

5.3

5.9

3.8

6.2

6.7

75

F93

87.00

4.7

5.9

3.5

5.8

6.8

76

FF5

92.59

5.3

5.9

3.8

6.2

6.8

77

F79

105.00

5.6

5.9

3.9

6.4

6.9

78

FF15

121.93

6.0

6.0

4.1

6.7

7.0

79

FF25

126.65

5.3

6.0

3.8

6.2

7.0

80

F76

128.00

5.3

6.0

3.8

6.2

7.0

81

F78

129.00

5.3

6.0

3.8

6.2

7.0

82

F89

132.00

4.7

6.0

3.5

5.8

7.0

83

F43

135.00

5.6

6.0

3.9

6.4

7.0

84

F19

147.00

5.6

6.0

3.9

6.4

7.1

85

F54

161.00

5.6

6.0

3.9

6.4

7.1

86

FF4

168.27

5.3

6.0

3.8

6.2

7.1

87

F41

169.00

5.6

6.0

3.9

6.4

7.1

88

FF14

172.32

6.0

6.0

4.1

6.7

7.2

89

F75

175.00

5.3

6.0

3.8

6.2

7.2

90

F50

182.00

5.3

6.0

3.8

6.2

7.2

91

FF11

185.35

5.3

6.0

3.8

6.2

7.2

92

FF18

194.60

6.1

6.0

4.2

6.8

7.2

93

F20 – Moradabad Fault

204.00

6.1

6.7

4.5

7.2

7.2

94

FF20

208.25

5.8

6.1

4.0

6.6

7.3

95

F95

242.00

5.8

6.1

4.0

6.6

7.3

96

FF17

244.74

6.1

6.1

4.2

6.8

7.3

97

FF9

289.95

5.3

6.1

3.8

6.2

7.4

98

F90

336.00

4.7

6.1

3.5

5.8

7.5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Sarkar, R. Evaluation of seismic hazard of Uttarakhand State of India through deterministic approach. J Earth Syst Sci 132, 176 (2023). https://doi.org/10.1007/s12040-023-02185-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02185-z

Keywords

Navigation