Skip to main content
Log in

Hydrogeochemical characteristics and evaluation of the water resources in Tuzlukçu (Konya/Turkey) geothermal area

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Tuzlukçu geothermal area is 25 km northeast of Akşehir (Konya/Turkey). The aim of the present study is to determine the hydrogeochemical and isotopic characteristics (δ18O, δ2H, 3H, and 13C) and reservoir temperatures. The electrical conductivity values of thermal waters with temperatures ranging between 48° and 56°C are between 3200 and 8795 μs/cm. The sampled waters are of the Ca–Mg–HCO3 and Na–HCO3 types. The chemical composition of the waters is mainly controlled by the dissolution/weathering of carbonates and silicates and reverse ion-exchange reactions. The calculated quartz geothermometers were 70–90°C for Tuzlukçu thermal waters. The thermal waters’ isotopic data (δ18O, δ2H and 3H) shows mixing, intermediate to the deep circulating meteoric origin, and 20–80 years of residence time. The 13C ratio of the water varies between −10.92 and 5.24. There are multiple carbon sources in cold waters, whereas the primary carbon sources in thermal waters are the dissolution of marine carbonates and metamorphic CO2.

Research Highlights

  • Carbonate and silicate weathering are the most important factors controlling water chemistry.

  • It has been determined that the waters can have a temperature of up to 90°C.

  • The waters, which are of meteoric origin and whose ages vary between 20 and 80 years, have different origins of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Agyemang V O 2020 Hydrochemical characterization and assessment of groundwater suitability for drinking, domestic and irrigation purposes in the Agona East District Ghana; Iconic 3(7) 112–125.

    Google Scholar 

  • Alçiçek H, Bülbül A and Alçiçek M C 2016 Hydrogeochemistry of the thermal waters from the Yenice geothermal field (Denizli Basin, Southwestern Anatolia, Turkey); J. Volcanol. Geotherm. Res. 309 118–138.

    Article  Google Scholar 

  • Alçiçek H, Bülbül A, Brogi A, Liotta D, Ruggieri G, Capezzuoli E, Meccheri M, Yavuzer I and Alçiçek M C 2018 Origin, evolution and geothermometry of the thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey); J. Volcanol. Geotherm. Res. 349 1–30.

    Article  Google Scholar 

  • Anonymous 2020 Jeotermal kaynakların değerlendirilmesi projesi Konya İl Raporu; TÜBİTAK, Türkiye Sanayi Sevk ve İdare Enstitüsü (in Turkish).

  • Appelo C A J and Postma D 2005 Geochemistry, Groundwater and Pollution; CRC Press, London, 683p.

  • Arnorsson S, Gunnlaugsson E and Svavarsson H 1983 The chemistry of geothermal waters in Iceland-ii. Mineral equilibria and independent variables controlling water compositions; Geohim. Cosmichim. Acta 47 547–566.

    Article  Google Scholar 

  • Ayyildiz T, Tekin E and Satir M 2004 Water circulation near the mixed-water and microbiologic activity of the Mesozoic Dolomite Sequence, an example from the Central Taurus, Turkey; Carb. Evap. 19 107–117.

    Article  Google Scholar 

  • Baba A and Sözbilir H 2012 Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in western Turkey; Chem. Geol. 334 364–377, https://doi.org/10.1016/j.chemgeo.2012.06.006.

    Article  Google Scholar 

  • Barik R and Pattanayak S K 2019 Assessment of groundwater quality for irrigation of green spaces in the Rourkela city of Odisha, India; Groundw. Sustain. Dev. 8 428–438.

    Article  Google Scholar 

  • Başaran C, Ulutürk Y and Yıldız A 2022 Updated geochemical and geothermometry study on Ömer-Gecek geothermal area (Afyonkarahisar/Turkey), Turkish J. Earth Sci. 31(4) 359–371, https://doi.org/10.55730/1300-0985.1806.

  • Beker K, Karzaoğlu H, Başıkara M and Arıgün Z 2015 Konya ve civarı jeotermal enerji aramaları projesi; MTA Enerji Hammadde Etüt ve Arama Daire Başkanlığı, Ankara.

  • Bozdağ A 2016 Hydrogeochemical and isotopic characteristics of Kavak (Seydişehir-Konya) geothermal field, Turkey; J. African Earth Sci. 121 72–83, https://doi.org/10.1016/j.jafrearsci.2016.05.019.

    Article  Google Scholar 

  • Bozdağ A and Göçmez G 2016 Hydrogeochemical and isotopic study of groundwater in a semi-arid region Yeniceoba Plain (Cihanbeyli-Konya), Central Anatolia, Turkey; Acta Geol. Sinica 90(1) 230–241.

    Article  Google Scholar 

  • Calmbach L 1997 Aquachem Computer Code-Version 3.7.42;Waterloo, Ontario, Canada, N2L 3L3: Waterloo Hydrogeologic.

  • Chandrasekharam D and Bundschuh J 2008 Low-enthalpy geothermal resources for power generation; 1st edn, CRC Press/Balkema, The Netherlands, Francis and Taylor.

  • Clark I 2015 Groundwater geochemistry and isotopes; CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742.

  • Clark I D and Fritz P 1997 Environmental Isotopes in Hydrogeology; Lewis Publishers, Boca Raton, FL, New York, 328p.

  • Craig H 1961 Isotopic variations in meteoric waters; Science 133(3465) 1702–1703.

    Article  Google Scholar 

  • Cuna S, Luttge D and Hosu A 2001 Carbon and oxygen isotope ratios in Rona Limestone, Romania; Studia UBB Geologia 46 139–152, https://doi.org/10.5038/1937-8602.46.1.11.

    Article  Google Scholar 

  • Das P, Maya K and Padmalal D 2021 Hydrochemistry, geothermometry and origin of the low-temperature thermal springs of South Konkan region, India; Geothermics 90 101997, https://doi.org/10.1016/j.geothermics.2020.101997.

  • Datta P S and Tyagi S K 1996 Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime; J. Geol. Soc. India 47 179–188.

    Google Scholar 

  • Davraz A, Nalbantçılar M T, Varol S and Önden İ 2022 Hydrogeochemistry and reservoir characterization of the Konya geothermal fields, Central Anatolia/Turkey; Geochemistry 125867, https://doi.org/10.1016/j.chemer.2022.125867.

  • Dilaver A T, Aydın B, Özyurt N N and Bayarı C S 2018 Türkiye Yağışlarının İzotop İçerikleri (2012–2016); DSİ-TAKK ve MGM-AD, Ankara, 44p.

  • Dirican A, Unal S, Acar Y and Demircan M 2005 The temporal and seasonal variation of H2 and O18 in atmospheric water vapour and precipitation from Ankara, Turkey in relation to air mass trajectories at Mediterranean Basin (Final Report of a Coordinated Research Project 2000–2004 No. IAEA-TECDOC-1453), Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate. International Atomic Energy Agency, Vienna.

  • Dotsika E, Dalampakis P and Spyridonos E et al. 2021 Chemical and isotopic characterization of the thermal fluids emerging along the North-Northeastern Greece; Sci. Rep. 11 16291, https://doi.org/10.1038/s41598-021-95656-6.

    Article  Google Scholar 

  • Du D, Liu H, Zhang J, Miao J and Cao X 2021 Groundwater chemical characteristics and salinization mechanism in the coastal plain of the south bank of Laizhou Bay; Earth Environ. Sci. 697 012026, https://doi.org/10.1088/1755-1315/697/1/012026.

  • Duchi V, Minissale A and Manganelli M 1992 Chemical composition of natural deep and shallow hydrothermal fluids in the Larderello geothermal field; J. Volcanol. Geotherm. Res. 49(3–4) 313–328, https://doi.org/10.1016/0377-0273(92)90020-e.

    Article  Google Scholar 

  • Egemeier S J 1981 Cavern development by thermal waters; Bull. Nat. Speleol. Soc. 3 31–51.

    Google Scholar 

  • Emre Ö, Duman T Y, Özalp S, Olgun Ş and Elmacı H 2011 Active fault map of Turkey (Scale 1:250,000), General Directorate of Mineral Research and Exploration Special Publication Series, Afyon (NJ 36-5) Quadrangle, Sl. no.: 16. Ankara, Turkey: MTA.

  • Erbaş H and Bozdağ A 2022 Hydrogeochemical characteristics and evaluation of the geothermal fluids in the Gazlıgöl geothermal field (Afyonkarahisar), western Anatolia, Turkey, Geothermics 105 102543, https://doi.org/10.1016/j.geothermics.2022.102543.

  • Favara R, Grassa F, Inguaggiato S and D’Amore F 1998 Geochemical and hydrogeological characterization of thermal springs in Western Sicily, Italy; J. Volcanol. Geotherm. Res. 84 125–141.

    Article  Google Scholar 

  • Fournier R O 1977 Chemical geothermometers and mixing models for geothermal systems; Geothermics 5 41–50.

    Article  Google Scholar 

  • Fritz S J 1994 A survey of charge-balance errors on published analyses of potable ground and surface waters; Groundwater 32(4) 539–546.

    Article  Google Scholar 

  • Gaur N, Sarkar A and Dutta D et al. 2022 Evaluation of water quality index and geochemical characteristics of surfacewater from Tawang India; Sci. Rep. 12 11698, https://doi.org/10.1038/s41598-022-14760-3.

    Article  Google Scholar 

  • Giggenbach W F 1988 Geothermal solute equilibria: Derivation of Na–K–Ca–Mg geoindicators; Geochim. Cosmochim. Acta 52 2749–2765, https://doi.org/10.1016/0016-7037(88)90143-3.

    Article  Google Scholar 

  • Giggenbach W F 1992 Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin; Earth Planet. Sci. Lett. 113(4) 495–510, https://doi.org/10.1016/0012-821x(92)90127-h.

    Article  Google Scholar 

  • Giggenbach W F and Glover R B 1992 Tectonic regime and major processes governing the chemistry of water and gas discharges from the Rotorua geothermal field, New Zealand; Geothermics 21(1–2) 121–140.

    Article  Google Scholar 

  • Giggenbach W F and Goguel R L 1989 Collection and analysis of geothermal and volcanic water and gas discharges; NZ DSIR Chemistry Report 2401 1–82.

    Google Scholar 

  • Giggenbach W F, Sheppard D S, Robinson B W, Stewart M K and Lyon G L 1994 Geochemical structure and position of the Waiotapu geothermal field, New Zealand; Geothermics 23(5–6) 599–644.

    Article  Google Scholar 

  • Göktaş İ 2010 Akhüyük (Ereğli-Konya) sıcak ve mineralli suların kimyasal özellikleri ve traverten çökeliminde etkili olan faktörlerin belirlenmesi. Msc Thesis, Selçuk University, Konya, Turkey (in Turkish).

  • Goldscheider N, Mádl-Szőnyi J and Erőss A et al. 2010 Review: Thermal water resources in carbonate rock aquifers; Hydrogeol J. 18 1303–1318, https://doi.org/10.1007/s10040-010-0611-3.

  • Güleç N 2015 Applications of geothermometry, geothermal geochemistry and some new geothermal approaches (Reviewed Course Book of International Summer School on Geothermal Geochemistry) (eds) Savaşçın M Y and Mertoğlu O, Dokuz Eylül Üniversity, Ankara, ss. 85–103, 2005.

  • Han D M, Liang X, Jin M G, Currell M J, Song X F and Liu C M 2010 Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin; J. Volcanol. Geotherm. Res. 189(1–2) 92–104.

    Article  Google Scholar 

  • Hem J D 1985 Study and interpretation of the chemical characteristics of natural water; In: U.S. Geological Survey Water-Supply Paper 2254, U.S. Geological Survey, Alexandria, VA22304, USA, 263p.

  • Hendry M J, Wassenaar L I and Kotzer T 2000 Chloride is often used as a conservative tracer in geothermal systems; Water Resour. Res. 36 285–296.

    Article  Google Scholar 

  • Karaoğlu Ö, Bazargan M, Baba A and Browning J 2019 Thermal fluid circulation around the Karliova triple junction: Geochemical features and volcano-tectonic implications (Eastern Turkey); Geothermics 81 168–184, https://doi.org/10.1016/j.geothermics.2019.05.003.

    Article  Google Scholar 

  • Katz B G, Coplen T B and Bullen T D et al. 1997 Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst; Ground Water 35 1014–1028, https://doi.org/10.1111/j.1745-6584.1997.tb00174.x.

  • Keith M L and Weber Y N 1964 Carbon and oxygen isotopic composition of selected limestone and fossils; Geochem. Cosmochim. Acta 28 1787–1816.

    Article  Google Scholar 

  • Kendall C and Caldwell E A 2006 Fundamentals of isotope geochemistry; In: Isotope Tracers In Catchment Hydrology (eds) Kendall C and McDonnell J J,  Elsevier, The Netherlands, pp. 51–84.

    Google Scholar 

  • Keskin T E and Kaçaroğlu F 2015 Hydrogeological features and environmental impacts of geothermal waters in the Yıldız River Basin (Sivas, Turkey); Water Environ. Res. 87(2) 152–168.

    Article  Google Scholar 

  • Koçyiğit A and Deveci Ş 2007 Çukurören-Çobanlar (Afyon) arasındaki deprem kaynaklarının (Aktif fayların) belirlenmesi, TÜBİTAK, Proje No: 106Y209, 71s., Ankara.

  • Lakshmanan E, Kannan K and Senthil K M 2003 Major ion chemistry and identification of hydrogeochemical process of groundwater in part of Kancheepuram district, Tamilnadu, India; J. Environ. Geosci. 10(4) 157–166, https://doi.org/10.1306/eg100403011.

    Article  Google Scholar 

  • Lambrakis N, Zagana E and Katsanou K 2013 Geochemical patterns and origin of alkaline thermal waters in Central Greece (Platystomo and Smokovo areas); Environ. Earth Sci. 69 2475–2486, https://doi.org/10.1007/s12665-012-2073-5.

    Article  Google Scholar 

  • Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L and Yu P 2016 Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China; Expo Health 8 331–348, https://doi.org/10.1007/s12403-016-0193-y.

    Article  Google Scholar 

  • Mahmoudi N, Nakhaei M and Porhemmat J 2017 Assessment of hydrogeochemistry and contamination of Varamin deep aquifer, Tehran Province, Iran; Environ. Earth Sci. 76 370, https://doi.org/10.1007/s12665-017-6698-2.

  • Mayo A L and Loucks M D 1995 Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range; Utah J Hydrol. 172 31–59, https://doi.org/10.1016/0022-1694(95)02748-E.

  • Mazor E 2004 Chemical and isotope groundwater hydrology; 3rd edn, Marcel Dekker, 453p.

  • Mazor E and Mañon M A 1979 Geochemical tracing in producing geothermal fields: A case study at Cerro Prieto; Geothermics 8(3–4) 231–240, https://doi.org/10.1016/0375-6505(79)90045-2.

    Article  Google Scholar 

  • Meybeck M 1987 Global chemical weathering of surficial rocks estimated from river dissolved loads; Am. J. Sci. 287 401–428.

    Article  Google Scholar 

  • Michard G 1990 Behaviour of the major elements and trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas; Chem. Geol. 89 117–134.

    Article  Google Scholar 

  • Morales-Arredondo J I, Hernández M A A and Juárez-Aparicio F et al. 2021 Use of δ18O, δ13C and NO3 to identify hydrogeochemical processes related to contamination in an aquifer located in central Mexico; Acta Geochim., https://doi.org/10.1007/s11631-021-00519-6.

    Article  Google Scholar 

  • Müller G 1967 Diagenesis in argillaceous sediments; In: Diagenesis in Sediments (eds) Larsen G and Chilingar G V, Elsevier, Amsterdam 8 127–177.

  • Müller T, Friesen J, Weise S, M Al Abri O, Bait Said A B A and Michelsen N 2020 Stable isotope composition of Cyclone Mekunu rainfall, Southern Oman; Water Resour. Res. 56(12) e2020WR027644, https://doi.org/10.1029/2020WR027644.

  • Nagaraju A, Suresh S and Killham K et al. 2006 Hydrogeochemistry of waters of Mangampeta a barite mining area, Cuddapah basin, Andhra Pradesh, India; Turkish J. Environ. Sci. 30 203–219.

    Google Scholar 

  • Nagendra R, Kamalak Kannan B V, Sen G, Gilbert H and Bakkiaraj D et al. 2010 Sequence surfaces and paleobathymetric trends in Albian to Maastrichtian sediments of Ariyalur area, Cauvery Basin India; Mar. Pet. Geol. 28(4) 895–905, https://doi.org/10.1016/j.marpetgeo.2010.04.002.

    Article  Google Scholar 

  • Narany S T, Ramli M F and Aris A Z K et al. 2014 Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques in Amol-Babol plain; Iran Sci. World J., 419058, https://doi.org/10.1155/2014/419058.

  • Özkaymak Ç and Sözbilir H 2020 Batı Anadolu’da genişleme alanı tipi jeotermal ortamın varlığına dair yapısal veriler: Afyon-Akşehir Grabeni’nden örnek bir çalışma; Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 20 693–702.

    Google Scholar 

  • Özkaymak Ç, Sözbilir H, Geçievi M O and Tiryakioğlu İ 2019 Late Holocene coseismic rupture and aseismic creep on the Bolvadin Fault, Afyon Akşehir Graben, Western Anatolia; Turkish J. Earth Sci. 28(6) 787–804.

    Google Scholar 

  • Parkhurst D L and Appelo C A J 2013 Description of input and examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations (No. 6-A43), US Geological Survey.

  • Pasvanoğlu S and Çelik M 2018 A conceptual model for groundwater flow and geochemical evolution of thermal fluids at the Kızılcahamam geothermal area, Galatian volcanic Province; Geothermics 71 88–107.

    Article  Google Scholar 

  • Penuela-Arevalo L A and Carrillo-Rivera J J 2013 Discharge areas as a useful tool for understanding recharge areas, study case: Mexico catchment; Environ. Earth Sci. 68(4) 999–1013.

    Article  Google Scholar 

  • Piper A M 1944 A graphic procedure in the geochemical interpretation of water analyses; Eos, Trans. Am. Geophys. Union 25(6) 914–928.

    Article  Google Scholar 

  • Ravikumar P, Prakash K I and Somashekar R K 2015 Suitability assessment of deep groundwater for drinking and irrigation use in the parts of Hoskote and Malur Taluks, Karnataka (India); Environ. Res. Eng. Manag. 71(1) 15–26, https://doi.org/10.5755/j01.erem.71.1.9809.

    Article  Google Scholar 

  • Şahinci A 1991 Geochemistry of natural waters; The Reform Printing Office, Izmir (in Turkish).

  • Schoeller H 1962 Les eaux souterraines (ed.) Masson, https://doi.org/10.1002/iroh.19640490118.

  • Schoeller H 1977 Geochemistry of groundwater; Groundwater studies: An International Guide for Research and Practice 15 1–18, Paris.

  • Sener M F 2019 A new approach to Kırşehir (Turkey) geothermal waters using REY, major elements and isotope geochemistry; Environ. Earth Sci. 78 75, https://doi.org/10.1007/s12665-019-8068-8.

    Article  Google Scholar 

  • Şener M F and Baba A 2019 Geochemical and hydrogeochemical characteristics and evolution of Kozaklı geothermal fluids, Central Anatolia, Turkey; Geothermics 80 69–77, https://doi.org/10.1016/j.geothermics.2019.02.012.

    Article  Google Scholar 

  • Setiawan T, Alam B Y S and Haryono E 2020 Hydrochemical and environmental isotopes analysis for characterizing a complex karst hydrogeological system of Watuputih area, Rembang, Central Java, Indonesia; Hydrogeol. J. 28 1635–2165, https://doi.org/10.1007/s10040-020-02128-8.

    Article  Google Scholar 

  • Shakeri A, Moore F and Kompani-Zare M 2008 Geochemistry of the thermal springs of Mount Taftan, southeastern Iran; J. Volcanol. Geotherm. Res. 178(4) 829–836.

    Article  Google Scholar 

  • Toscano R, Villanueva R C A and Martínez R C et al. 2020 Hydrogeochemical characteristics and assessment of drinking water quality in the urban area of Zamora, Mexico; Water 12 556, https://doi.org/10.3390/w12020556.

    Article  Google Scholar 

  • Truesdell A H and Fournier R O 1977 Procedure for estimating the temperature of a hotwater component in a mixed water by using a plot of dissolved silica versus enthalpy; J. Res. U.S. Geol. Surv. 5(1) 49–52.

  • Umut M 2008 Maden Tetkik ve Arama Genel Müdürlüğü, Türkiye jeoloji haritaları No:92, Ilgın K27-L27 Paftaları, Ankara.

  • Vahrenkamp V C 1996 Carbon isotope stratigraphy of the upper Kharaib and Shuaiba formations: Implications for the Lower Cretaceous evolution of the Arabian Gulf region; Am. Assoc. Petrol. Geol. Bull. 80 647–662.

    Google Scholar 

  • Vengosh A, Helvacı C and Karamanderesi I H 2002 Geochemical constraints for the origin of thermal waters from western Turkey; Appl. Geochem. 17(3) 163–183.

    Article  Google Scholar 

  • Verma M P 2000 Limitations in applying silica geothermometers for geothermal reservoir evaluation Proceedings, Twenty-Fifth Workshop on Geothermal Reservoir Engineering, 24–26, Stanford University, Stanford, California.

  • Vimmerstedt L 2002 Small geothermal projects for rural electrification; In: Geothermal resources for developing countries (eds) D Chandrasekharam and J Bundschuh, A A Bakema, Leiden, The Netherlands, pp. 103–129.

  • Yasin D and Kargın M 2021 Hydrogeochemical and isotopic characteristics of water resources in Çubuk-Melikşah (Ankara/Turkey); Environ. Earth Sci. 80 513, https://doi.org/10.1007/s12665-021-09813-1.

    Article  Google Scholar 

  • Yazıcıoğlu D 2007 Hüyük-İmrenler-Burunsuz-Köşk (Beyşehir-Konya) çevresinin hidrojeoloji incelemesi; Msc Thesis, Selçuk University, Konya, Turkey (in Turkish).

Download references

Acknowledgement

The coordinatorships of the Scientific Research Project of Afyon Kocatepe University funded this study with project number 21.FENBİL.03.

Author information

Authors and Affiliations

Authors

Contributions

Timur Çevikoğlu (TÇ) is the master student and Can Başaran (CB) is the thesis advisor. TÇ and CB conducted fieldwork and sampling and contributed to the writing of the manuscript. TÇ evaluated the analysis results with the programs and prepared the figures. CB made evaluations and comments and compared them with the literature.

Corresponding author

Correspondence to Can Başaran.

Additional information

Communicated by Abhijit Mukherjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çevikoğlu, T., Başaran, C. Hydrogeochemical characteristics and evaluation of the water resources in Tuzlukçu (Konya/Turkey) geothermal area. J Earth Syst Sci 132, 152 (2023). https://doi.org/10.1007/s12040-023-02162-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02162-6

Keywords

Navigation