Skip to main content
Log in

Chromite chemistry as petrogenetic indicator of altered ultramafic rocks from Higher Himalayan Crystalline, Kishtwar, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The altered ultramafic rocks from Higher Himalayan Crystalline (HHC) are characterised by the mineral assemblage of olivine, pyroxene, phlogopite, chromite, and opaques. Olivine and pyroxenes show alteration to serpentine, talc, anthophyllite, and tremolite. In the present research work, the petrogenesis and paleo-tectonic setting of the ultramafic rocks from the Paddar sapphire mining area are understood using chromite chemistry. The investigated chromite is characterised by a higher abundance of Cr2O3, FeO, Al2O3, and low MgO and is classified as Al-chromite. They show higher Cr# (71.10–87.80) and Fe# (71.66–86.04) and lower Mg# (13.95–28.16), suggesting their affinity towards the ophiolitic peridotite. Chromite geochemistry further suggests that the parent magma originated from the mantle and intruded under high pressure and low oxygen fugacity. Chromite chemistry suggests arc to supra-subduction tectonic setting for the crystallisation of chromite from ultramafic magma. Based on the correlation matrix and binary diagram, it is interpreted that Ti + Cr ↔ Al; Cr ↔ Fe+ substitution prevails at the octahedral site, while Fe ↔ Mg; Al ↔ Fe and Al ↔ Mg substitution mechanism operated at the tetrahedral site during the crystallisation of chromite from magma. Further, compositional re-equilibration occurs during hydrothermal alteration.

Research highlights

  1. 1.

    The ultramafic rocks from Paddar area are mainly composed of olivine and pyroxenes with a variable amount of opaque minerals and are highly altered to serpentine and talc.

  2. 2.

    Chromite occurs as isolated subhedral to anhedral grains and scattered fine dust associated with altered major mineral phases.

  3. 3.

    The chromites shows very high Cr# (100*Cr/Cr+Al) and wider range of the Mg# (100*Mg/Mg+Fe2+).

  4. 4.

    The chromite chemistry suggests arc to supra-subduction tectonic setting for the generation of magma in the study area.

Graphical abstract

The present research paper is focused on chromite chemistry from altered ultramafcs from HIgher Himalyan Crystalline Complex. The host rocks of chromites are intruded in the garnetiferous-biotite gneiss. The investigated chromite is characterised by higher abundance of Cr2O3, FeO, Al2O3, Cr# (71.10 - 87.80) and Fe# (71.66-86.04) while low content of MgO and Mg# (13.95-28.16) is recorded. They are classified as Al-chromiteexhibiting affinity towards the ophiolitic peridotite. They have intrected with hydrothermal fluids resulting post magmatic compositional re-equilibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Abzalov M Z 1998 Chrome-spinels in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: Emphasis on alteration features; Lithos 43(3) 109–134.

    Article  Google Scholar 

  • Ahmed A H, Arai S, Abdel-Aziz Y M, Ikenne M and Rahimi A 2009 Platinum-group elements distribution and spinel composition in podiform chromitites and associated rocks from the upper mantle section of the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco; J. Afr. Earth Sci. 55(1–2) 92–104.

    Article  Google Scholar 

  • Akmaz R M, Uysal I and Saka S 2014 Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis; Ore Geol. Rev. 58 208–224.

    Article  Google Scholar 

  • Allen G C, Jutson J A and Tempest P A 1988 Characterisation of nickel-chromium-iron spinel-type oxides; J. Nucl. Mater. 158 96–107.

    Article  Google Scholar 

  • Arai S 1992 Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry; Mineral. Mag. 56(383) 173–184.

    Article  Google Scholar 

  • Arai S 1997 Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction; Resour. Geol. 47(4) 177–187.

    Google Scholar 

  • Bannister V, Roeder P and Poustovetov A 1998 Chromite in the Paricutin lava flows (1943–1952); J. Volcanol. Geotherm. Res. 87(1–4) 151–171.

    Article  Google Scholar 

  • Barnes S J 2000 Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism; J. Petrol. 41(3) 387–409.

    Article  Google Scholar 

  • Barnes S J and Hill R E T 1995 Poikilitic chromfite in komatiitic cumulates; Mineral. Petrol. 54(1) 85–92.

    Article  Google Scholar 

  • Barnes S J and Roeder P L 2001 The range of spinel compositions in terrestrial mafic and ultramafic rocks; J. Petrol. 42(12) 2279–2302.

    Article  Google Scholar 

  • Bartoli O, Acosta-Vigil A, Cesare B, Remusat L, Gonzalez-Cano A, Wälle M and Langone A 2019 Geochemistry of Eocene-Early Oligocene low-temperature crustal melts from Greater Himalayan Sequence (Nepal): A nanogranitoid perspective; Contrib. Mineral. Petrol. 174 1–18.

    Article  Google Scholar 

  • Basu A R and MacGregor I D 1975 Chromite spinels from ultramafic xenoliths; Geochim. Cosmochim. Acta 39 937–945.

  • Basu A R and MacGregor I D 1976 Chromite spinels from ultramafic xenoliths; In: Chromium: Its physicochemical behavior and petrologic significance, Pergamon Press, pp. 937–945.

  • Bhat I M, Ahmad T and Rao D S 2019 Alteration of primary Cr-spinel mineral composition from the Suru Valley ophiolitic peridotites, Ladakh Himalaya: Their low-temperature metamorphic implications; J. Earth Syst. Sci. 128 1–14.

  • Bird M L and Clark A L 1976 Microprobe study of olivine chromitites of the Goodnews Bay ultramafic complex, Alaska, and the occurrence of platinum; J. Res. US Geol. Surv. 4(6) 717–725.

    Google Scholar 

  • Boudier F, Mainprice D, Nicolas A and Barou F 2021 Textural insights into the significance of ophiolitic chromitites, with special reference to Oman; Tectonophys. 814 228972.

    Article  Google Scholar 

  • Burkhard D J 1993 Accessory chromium spinels: Their coexistence and alteration in serpentinites; Geochim. Cosmochim. Acta 57(6) 1297–1306.

    Article  Google Scholar 

  • Cameron E N 1975 Post cumulus and subsolidus equilibrium of chromite and coexisting silicates in the Eastern Bushveld Complex; Geochim. Cosmochim. Acta 39 1021–1033.

    Article  Google Scholar 

  • Carosi R, Montomoli C, Rubatto D and Visonà D 2010 Late Oligocene high-temperature shear zones in the core of the Higher Himalayan Crystallines (Lower Dolpo, western Nepal); Tectonics 29(4) 1–20.

    Article  Google Scholar 

  • Carosi R, Montomoli C, Iaccarino S and Visonà D 2019 Structural evolution, metamorphism and melting in the Greater Himalayan Sequence in central-western Nepal; Geol. Soc. Spec. Publ. 483(1) 305–323.

    Article  Google Scholar 

  • DeCelles P G, Gehrels G E, Quade J, LaReau B and Spurlin M 2000 Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal; Science 288(5465) 497–499.

    Article  Google Scholar 

  • Deer W A, Howie R A and Zussman J 1992 An Introduction to the rock-forming minerals; 2nd edn., Longman Scientific and Technical, Hongkong, 696p.

  • Dewey J F and Bird J M 1970 Mountain belts and the new global tectonics; J. Geophys. Res. 75(14) 2625–2647.

    Article  Google Scholar 

  • Dick H J and Bullen T 1984 Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas; Contrib. Mineral. Petrol. 86(1) 54–76.

    Article  Google Scholar 

  • DiPietro J A and Pogue K R 2004 Tectonostratigraphic subdivisions of the Himalaya: A view from the west; Tectonics 23(5).

  • Evans B W and Frost B R 1976 Chrome-spinel in progressive metamorphism – a preliminary analysis; In: Chromium: Its physicochemical behavior and petrologic significance, Pergamon Press, pp. 959–972.

  • Frank W, Grasemann B, Guntli P and Miller C 1995 Geological map of the Kishtwar-Chamba-Kulu region (NW Himalayas, India); Jahrbuch der Geologischen Bundesanstalt 138(2) 299–308.

    Google Scholar 

  • Fuchs G 1975 Contributions to the geology of the north-western Himalayas; Geolog. Bundesanst 32.

  • Gargiulo M F, Bjerg E A and Mogessie A 2013 Spinel group minerals in metamorphosed ultramafic rocks from Río de Las Tunas belt, Central Andes, Argentina; Geol. Acta 11(2) 133–148.

    Google Scholar 

  • González Jiménez J M, Kerestedjian T, Proenza Fernández J A and Gervilla Linares F 2009 Metamorphism on chromite ores from the Dobromirtsi ultramafic massif, Rhodope Mountains (SE Bulgaria); Geologica Acta 7(4) 413–429.

  • González-Jiménez J M, Reich M, Camprubí A, Gervilla F, Griffin W L, Colás V and Centeno-García E 2015 Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles; Contrib. Mineral. Petrol. 170(2) 1–20.

    Article  Google Scholar 

  • Guillot S, Hattori K H, de Sigoyer J, Nägler T and Auzende A L 2001 Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites; Earth Planet. Sci. Lett. 193(1–2) 115–127.

    Article  Google Scholar 

  • Haggerty S E 1991 Oxide mineralogy of the upper mantle; In: Oxide minerals: Petrologic and magnetic significance (ed.) Lindsey D H, Rev. Mineral. Geochem. 25 355–415.

    Google Scholar 

  • Herren E 1987 Zanskar Shear Zone: Northeast-southwest extension within the Higher Himalayas (Ladakh, India); Geology 15 409–413.

  • Hoffman M A and Walker D 1978 Textural and chemical variations of olivine and chrome spinel in the East Dover ultramafic bodies, south-central Vermont; Geol. Soc. Am. Bull. 89(5) 699–710.

    Article  Google Scholar 

  • Honegger K 1983 Structures and metamorphosis in the Zanskar Crystalline (Ladakh-Kashmir, India); Unpublished PhD Thesis, ETH Zurich.

  • Inger S and Harris N B W 1992 Tectonothermal evolution of the High Himalayan crystalline sequence, Langtang Valley, northern Nepal; J. Metamorph. Geol. 10(3) 439–452.

    Article  Google Scholar 

  • Irvine T N 1965 Chromian spinel as a petrogenetic indicator: Part 1. Theory; Can. J. Earth Sci. 2(6) 648–672.

    Article  Google Scholar 

  • Irvine T N 1967 Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications; Can. J. Earth Sci. 4(1) 71–103.

    Article  Google Scholar 

  • Irvine T N 1977 Origin of chromite layers in the Muskox intrusion and other intrusions: A new interpretation; Geology 5 273–277.

  • Ishii T 1992 Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana forearc, Leg 125; In: Proceedings of the ocean drilling program, scientific results 125 401–414.

  • Ishwar-Kumar C, Rajesh V J, Windley B F, Razakamanana T, Itaya T, Babu E V S S K and Sajeev K 2016 Petrogenesis and tectonic setting of the Bondla mafic–ultramafic complex, western India: Inferences from chromian spinel chemistry; J. Asian Earth Sci. 130 192–205.

    Article  Google Scholar 

  • Jan M Q and Windley B F 1990 Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, northwest Pakistan; J. Petrol. 31(3) 667–715.

    Article  Google Scholar 

  • Jonnalagadda M K, Benoit M, Harshe S, Tilhac R, Duraiswami R A, Grégoire M and Karmalkar N R 2022 Geodynamic evolution of the Tethyan lithosphere as recorded in the Spontang Ophiolite, South Ladakh ophiolites (NW Himalaya, India); Geosci. Front. 13(1) 101297.

    Article  Google Scholar 

  • Kamenetsky V S, Crawford A J and Meffre S 2001 Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks; J. Petrol. 42(4) 655–671.

  • Kang J, Chen L M, Yu S Y, Zheng W Q, Dai Z H, Zhou S H and Ai Q X 2022 Chromite geochemistry of the Jinchuan Ni–Cu sulfide-bearing ultramafic intrusion (NW China) and its petrogenetic implications; Ore Geol. Rev. 141 104644.

    Article  Google Scholar 

  • Kapsiotis A 2009 PGM and chromite mineralisation associated with the petrogenesis of the Vourinos and Pindos ophiolite complexes, northwestern Greece; Unpublished PhD thesis, University of Patras, Patras, Greece, 891p.

  • Karipi S, Tsikouras B, Hatzipanagiotou K and Grammatikopoulos T A 2007 Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece); Lithos 99(1–2) 136–149.

    Article  Google Scholar 

  • Kimball K L 1990 Effects of hydrothermal alteration on the compositions of chromian spinels; Contrib. Mineral. Petrol. 105(3) 337–346.

    Article  Google Scholar 

  • Kostopoulos D K 1991 Melting of the shallow upper mantle: A new perspective; J. Petrol. 32(4) 671–699.

  • Kumar A, Lal N, Jaln A K and Sorkhabi R B 1995 Late Cenozoic–Quaternary thermotectonic history of Higher Himalayan Crystallines (HHC) in Kishtwar–Padar–Zanskar region, NW Himalaya: Evidence from fission track ages; J. Geol. Soc. India 45 375–391.

    Google Scholar 

  • Kundig R 1989 Domal structures and high-grade metamorphism in the Higher Himalayan Crystalline, Zanskar Region, north-west Himalaya, India; J. Metamorph. Geol. 7(1) 43–55.

    Article  Google Scholar 

  • Le Fort P 1996 Evolution of the Himalaya; In: The tectonics of Asia (eds) Yin A and Harrison T M, Cambridge University Press, New York, pp. 95–109.

    Google Scholar 

  • Liipo J, Vuollo J, Nykänen V and Piirainen T 1994 Chromite compositions as evidence for an Archaean ophiolite in the Kuhmo greenstone belt in Finland; Bull. Geol. Soc. Finland 66(Part I) 3–18.

    Article  Google Scholar 

  • Loferski P J and Lipin B R 1983 Exsolution in metamorphosed chromite from the Red Lodge district, Montana; Am. Mineral. 68(7–8) 777–789.

    Google Scholar 

  • Maurel C and Maurel P 1982 Etude expérimentale de la solubilité du chrome dans les bains silicatés basiques et de sa distribution entre liquide et minéraux coexistants: Conditions d’existence du spinelle chromifère; Bull. Mineral. 105(6) 640–647.

    Google Scholar 

  • Mills S J, Hatert F, Nickel E H and Ferraris G 2009 The standardisation of mineral group hierarchies: Application to recent nomenclature proposals; Eur. J. Mineral. 21(5) 1073–1080.

    Article  Google Scholar 

  • Moghadam H S, Khedr M Z, Arai S, Stern R J, Ghorbani G, Tamura A and Ottley C J 2015 Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: A model for formation of podiform chromitites; Gondwana Res. 27(2) 575–593.

    Article  Google Scholar 

  • Nayak R and Maibam B 2020 Petrological study of spinel peridotites of Nidar ophiolite, Ladakh Himalaya, India; J. Earth Syst. Sci. 129(1) 47.

    Article  Google Scholar 

  • Noble S R and Searle M P 1995 Age of crustal melting and leucogranite formation from U–Pb zircon and monazite dating in the western Himalaya, Zanskar, India; Geology 23 1135–1138.

    Article  Google Scholar 

  • Onyeagocha A C 1974 Alteration of chromite from the Twin Sisters dunite, Washington; Am. Mineral.: J. Earth Planet. Mater. 59(5–6) 608–612.

    Google Scholar 

  • Palache C, Berman H and Frondel C 1944 The System of Mineralogy; 7th edn., Wiley, New York, 834p.

  • Parrish R R and Hodges V 1996 Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya; Geol. Soc. Am. Bull. 108(7) 904–911.

    Article  Google Scholar 

  • Pognante U, Castelli D, Benna P, Genovese G, Oberli F, Meier M and Tonarini S 1990 The crystalline units of the High Himalayas in the Lahul–Zanskar region (northwest India): Metamorphic–tectonic history and geochronology of the collided and imbricated Indian plate; Geol. Mag. 127(2) 101–116.

    Article  Google Scholar 

  • Pogue K R, Hylland M D, Yeats R S, Khattak W U and Hussain A 1999 Stratigraphic and structural framework of Himalayan foothills, northern Pakistan; Geol. Soc. Am. Spec. Papers, pp. 257–274.

  • Reddy S M, Searle M P and Massey J A 1993 Structural evolution of the High Himalayan gneiss sequence, Langtang valley, Nepal; Geol. Soc. London, Spec. Publ. 74(1) 375–389.

    Article  Google Scholar 

  • Roeder P L and Reynolds I 1991 Crystallisation of chromite and chromium solubility in basaltic melts; J. Petrol. 32(5) 909–934.

    Article  Google Scholar 

  • Rollinson H 2005 Chromite in the mantle section of the Oman ophiolite: A new genetic model; Island Arc 14(4) 542–550.

    Article  Google Scholar 

  • Rollinson H 2008 The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: Inferred parental melt compositions; Contrib. Mineral. Petrol. 156(3) 273–288.

    Article  Google Scholar 

  • Rollinson H, Appel P W and Frei R 2002 A metamorphosed, early Archaean chromitite from west Greenland: Implications for the genesis of Archaean anorthositic chromitites; J. Petrol. 43(11) 2143–2170.

    Article  Google Scholar 

  • Saleh G M 2006 The chromite deposits associated with ophiolite complexes, southeastern Desert, Egypt: Petrological and geochemical characteristics and mineralisation; Chin. J. Geochem. 25(4) 307–317.

    Article  Google Scholar 

  • Saxena M N 1971 The crystalline axis of the Himalaya: The Indian shield and continental drift; Tectonophys. 12(6) 433–447.

    Article  Google Scholar 

  • Scowen P A H, Roeder P L and Helz R T 1991 Reequilibration of chromite within Kilauea Iki lava lake, Hawaii; Contrib. Miner. Petrol. 107 8–20.

    Article  Google Scholar 

  • Searle M P, Stephenson B, Walker J and Walker C 2007 Restoration of the Western Himalaya: Implications for metamorphic protoliths, thrust and normal faulting, and channel flow models; Episodes 30(4) 242.

    Article  Google Scholar 

  • Singh R 2007 Geology of Kishtwar region, Jammu and Kashmir Himalaya, India with special emphasis on the Salkhalas, central crystallines; their relationship and implication on main central thrust; J. Geol. Soc. India 69(4) 699.

    Google Scholar 

  • Singh A K 2009 High-Al chromian spinel in peridotites of Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt: Implication for petrogenesis and geotectonic setting; Curr. Sci. 96(7) 973–978.

    Google Scholar 

  • Singh K 2010 Tectonic evolution of Kishtwar window with respect to the Main Central Thrust, northwest Himalaya, India; J. Asian Earth Sci. 39(3) 125–135.

    Article  Google Scholar 

  • Sorkhabi R B, Jain A K, Itaya T, Fukui S, Lal N and Kumar A 1997 Cooling age record of domal uplift in the core of the Higher Himalayan Crystallines (HHC), southwest Zanskar, India; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 106(3) 169–179.

    Article  Google Scholar 

  • Srivastava P K and Singh P 2022 Geochemistry of tourmaline of elbaite-dravite series from sapphire bearing pegmatites, proterozoic higher Himalayan Crystalline Complex Jammu and Kashmir, India: Implication for evolution of pegmatite melt; Lithos 408 106546.

    Article  Google Scholar 

  • Staubli A R 1988 Metamorphosis and deformation in the area of the main central displacement (MCT) (Kishtwar Park, central Himalaya). Geological Society of America Bulletin, Fenster, NW-Himalaya; PhD thesis no. 8573, ETH Zurich.

  • Staubli A 1989 Polyphase metamorphism and the development of the Main Central Thrust; J. Metamorph. Geol. 7(1) 73–93.

  • Stephenson B J, Waters D J and Searle M P 2000 Inverted metamorphism and the Main Central Thrust: Field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya; J. Metamorph. Geol. 18(5) 571–590.

    Article  Google Scholar 

  • Stephenson B J, Searle M P, Waters D J and Rex D C 2001 Structure of the Main Central Thrust zone and extrusion of the High Himalayan deep crustal wedge, Kishtwar–Zanskar Himalaya; J. Geol. Soc. 158(4) 637–652.

  • Stevens R E 1944 Composition of some chromites of the western hemisphere; Am. Mineral. 29(1–2) 1–34.

    Google Scholar 

  • Takahashi E 1987 Primary magma compostions and Mg/Fe ratios of their mantle residues along Mid-Atlantic Ridge 29°N to 73°N; Technical Rept. ISEI, Ser. A 9 1–14.

  • Tewari A P 1981 Exotic thrust mass of the Padar area in Kashmir; Tectonophys. 73 285–294.

    Article  Google Scholar 

  • Thakur V C 1980 Tectonics of the Central Crystallines of western Himalaya; Tectonophys. 62(1–2) 141–154.

    Article  Google Scholar 

  • Thakur V C 1987 Plate tectonic interpretation of the western Himalaya; Tectonophys. 134(1–3) 91–102.

    Article  Google Scholar 

  • Thöni M, Miller C, Hager C, Grasemann B and Horschinegg M 2012 New geochronological constraints on the thermal and exhumation history of the Lesser and Higher Himalayan Crystalline Units in the Kullu-Kinnaur area of Himachal Pradesh (India); J. Asian Earth Sci. 52 98–116.

    Article  Google Scholar 

  • Thy P 1983 Spinel minerals in transitional and alkali basaltic glasses from Iceland; Contrib. Mineral. Petrol. 83(1–2) 141–149.

    Article  Google Scholar 

  • Ulmer G C 1974 Alteration of chromite during serpentinisation in the Pennsylvania–Maryland District; Am. Mineral. 59(11–12) 1236–1241.

    Google Scholar 

  • Waterton P, Pearson D G, Mertzman S A, Mertzman K R and Kjarsgaard B A 2020 A fractional crystallisation link between komatiites, basalts, and dunites of the Palaeoproterozoic Winnipegosis Komatiite Belt, Manitoba, Canada; J. Petrol. 61(5) 052.

    Article  Google Scholar 

  • Webb A A G, Schmitt A K, He D and Weigand E L 2011 Structural and geochronological evidence for the leading edge of the Greater Himalayan Crystalline complex in the central Nepal Himalay; Earth Planet. Sci. Lett. 304(3–4) 483–495.

    Article  Google Scholar 

  • Yang C, Liu S A, Zhang L, Wang Z Z, Liu P P and Li S G 2021 Zinc isotope fractionation between Cr-spinel and olivine and its implications for chromite crystallisation during magma differentiation; Geochim. Cosmochim. Acta 313 277–294.

    Article  Google Scholar 

  • Zaccarini F, Garuti G, Proenza J A, Campos L, Thalhammer O A, Aiglsperger T and Lewis J F 2011 Chromite and platinum group elements mineralisation in the Santa Elena Ultramafic Nappe (Costa Rica): Geodynamic implications; Geol. Acta 9(3–4) 407–423.

    Google Scholar 

  • Zakrzewski M A 1989 Chromian spinels from Kusa, Bergslagen, Sweden; Am. Mineral. 74(3–4) 448–455.

    Google Scholar 

  • Zhou M F and Kerrich R 1992 Morphology and composition of chromite in komatiites from the Belingwe greenstone belt, Zimbabwe; Can. Mineral. 30(2) 303–317.

    Google Scholar 

  • Zhou M F and Robinson P T 1994 High-Cr and high-Al podiform chromitites, Western China: Relationship to partial melting and melt/rock reaction in the upper mantle; Int. Geol. Rev. 36(7) 678–686.

    Article  Google Scholar 

  • Zhou M F, Robinson P T and Bai W J 1994 Formation of podiform chromitites by melt/rock interaction in the upper mantle; Miner. Depos. 29 98–101.

  • Zhou M F, Robinson P T, Malpas J and Li Z 1996 Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle; J. Petrol. 37(1) 3–21.

    Article  Google Scholar 

  • Zhou M F, Sun M, Keays R R and Kerrich R W 1998 Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts; Geochim. Cosmochim. Acta 62(4) 677–688.

    Article  Google Scholar 

  • Zhou M F, Robinson P T, Malpas J, Edwards S J and Qi L 2005 REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet; J. Petrol. 46(3) 615–639.

    Article  Google Scholar 

  • Zhou M F, Robinson P T, Su B X, Gao J F, Li J W, Yang J S and Malpas J 2014 Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments; Gondwana Res. 26(1) 262–283.

    Article  Google Scholar 

Download references

Acknowledgements

The permission to conduct fieldwork and sample collection in the Paddar sapphire mining region from M/s J and K Minerals Limited is gratefully acknowledged by the authors. For the EPMA analysis, we are grateful to Dr Dinesh Pandit and Prof. N V Chalapathi Rao of the Department of Geology, Banaras Hindu University. We are grateful for Shri. Shakeel Ahmed Wani's companionship and assistance throughout the fieldwork.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have read, reviewed, and approved the paper. Both the authors contributed equally to the study.

Corresponding author

Correspondence to Pawan Singh.

Additional information

Communicated by George Mathew

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Srivastava, P.K. Chromite chemistry as petrogenetic indicator of altered ultramafic rocks from Higher Himalayan Crystalline, Kishtwar, India. J Earth Syst Sci 132, 142 (2023). https://doi.org/10.1007/s12040-023-02160-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02160-8

Keywords

Navigation