Skip to main content

Advertisement

Log in

Geochemistry of the Bhor Saidan alluvial plains in Haryana state of north India: Implications for catchment weathering, provenance, and tectonic setting

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The present study attempts to ascertain the sediment provenance of around 6.5-m thick palaeochannel sediment exposed in the vicinity of the Ghaggar–Hakra river system of the alluvial plains of the Haryana state of India. The major element geochemistry indicates that the sediments are arkosic in nature, dominated by quartz, K-feldspar, micas, plagioclase, and clay minerals (chlorite, illite, and a very less amount of montmorillonite). The CIA (chemical index of alteration) values ranged between 63 and 77, indicating moderate degrees of chemical weathering. REE plots show that the Eu anomaly is negative for average Bhor Saidan samples similar to PAAS and UCC, suggesting that they could have been deposited in the foreland basin after being originally produced from differentiated silicic and/or recycled sedimentary sources; nonetheless, a little positive Eu anomaly in the chondrite normalised plot is the result of feldspar and arkosic nature of sediments indicating higher levels of physical over the chemical weathering. Mostly the samples are from Siwaliks. Optically stimulated luminescence (OSL) dating suggests that the sediments are ~11 ka old. Further, the palaeochannel is being incised ~3.3 ka and younger sediments are stratigraphically deposited at lower levels. The discriminant function plots (Roser and Korsch 1988) of sediment samples exhibited that they were deposited in a passive margin setting and came from the interior of cratons or a quartzose sedimentary orogenic terrain. The present work done on the geochemistry of the sediments of a palaeochannel present in the alluvial plains will work as a dot on the map to connect the history of the river drainage system of the area in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Adamiec G and Aitken M J 1998 Dose-rate conversion factors: Update; Anc. TL 16 37–50.

  • Aitken M J 1998 Introduction to optical dating: The dating of quaternary sediments by the use of photon-stimulated luminescence; Clarendon Press.

  • Basu A 1985 Influence of climate and relief on compositions of sands released at source areas; Provenance of Arenites, pp. 1–18, https://doi.org/10.1007/978-94-017-2809-6_1.

  • Baud A, Atudorei V and Sharp Z 1996 Late Permian and Early Triassic evolution of the Northern Indian margin: Carbon isotope and sequence stratigraphy; Geodinamica Acta 9(2–3) 57–77, https://doi.org/10.1080/09853111.1996.11105278.

  • Bauluz B, Mayayo M J, Fernandez-Nieto C and Lopez J M G 2000 Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): Implications for source-area weathering, sorting, provenance, and tectonic setting; Chem. Geol. 168(1–2) 135–150, https://doi.org/10.1016/S0009-2541(00)00192-3.

    Article  Google Scholar 

  • Bhatia M R 1983 Plate tectonics and geochemical composition of sandstones; J. Geol. 91 611–627, https://doi.org/10.1086/628815.

    Article  Google Scholar 

  • Bhatia M R 1984 Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation; Sedim. Geol. 41 249–268, https://doi.org/10.1016/0037-0738(84)90065-4.

    Article  Google Scholar 

  • Bhatia M R 1985 Rare-earth elements geochemistry of Australian Paleozoic Graywackes and mud rocks, provenance and tectonic control; Sedim. Geol. 45 97–113, https://doi.org/10.1016/0037-0738(85)90025-9.

    Article  Google Scholar 

  • Bhatia M R and Crook K A 1986 Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins; Contrib. Mineral. Petrol. 92(2) 181–193, https://doi.org/10.1007/BF00375292.

    Article  Google Scholar 

  • Bøtter-Jensen L, Thomsen K J and Jain M 2010 Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry; Radiat. Meas. 45 253–257.

    Article  Google Scholar 

  • Carroll D 1953 Weatherability of zircon; J. Sedim. Res. 23 106–116, https://doi.org/10.1306/D4269562-2B26-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Chaudhari A R 2021 Saraswati River in northern India (Haryana) and its role in populating the Harappan civilisation sites – A study based on remote sensing, sedimentology, and strata chronology; Archeological Prospection 28 4, https://doi.org/10.1002/arp.1829.

    Article  Google Scholar 

  • Chauhan M S, Pokharia A K and Srivastava R K 2015 Late Quaternary vegetation history climatic variability and human activity in the Central Ganga Plain deduced by pollen proxy records from Karela Jheel India; Quat. Int. 371 144–156.

    Article  Google Scholar 

  • Cleary W J and Conolly J R 1972 Embayed quartz grains in soils and their significance; J. Sedim. Petrol. 42 899–904, https://doi.org/10.1306/74D7266C-2B21-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Colin F, Alarcon C and Vieillard P 1993 Zircon: An immobile index in soils?; Chem. Geol. 107 273–276.

    Article  Google Scholar 

  • Condie K C, Boryta M D, Liu J and Qian X 1992 The origin of Khondalites: Geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton; Precamb. Res. 59 207–223, https://doi.org/10.1016/0301-9268(92)90057-U.

    Article  Google Scholar 

  • Cordier S, Frechen M and Tsukamoto S 2010 Methodological aspects on luminescence dating of fluvial sands from the moselle basin Luxembourg; Geochronometria 35 67–74, https://doi.org/10.2478/v10003-010-0006-4.

    Article  Google Scholar 

  • Crook K A 1968 Weathering and roundness of quartz sand grains; Sedimentology 11(3–4) 171–182, https://doi.org/10.1111/j.1365-3091.1968.tb00851.x.

  • Cullers R L, Basu A and Suttner L J 1988 Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA; Chem. Geol. 70(4) 335–348.

  • Dabard M P 1990 Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry; Sedim. Geol. 69 45–58, https://doi.org/10.1016/0037-0738(90)90100-8.

    Article  Google Scholar 

  • Duller G A T 1996 Recent developments in luminescence dating of Quaternary sediments; Prog. Phys. Geogr. 20 127–145.

    Article  Google Scholar 

  • Fedo C M, Wayne Nesbitt H and Young G M 1995 Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance; Geology 23(10) 921–924.

    Article  Google Scholar 

  • Fedo C M, Eriksson K A and Krogstad E J 1996 Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering; Geochim. Cosmochim. Acta 60(10) 1751–1763.

  • Feng R and Kerrich R 1990 Geobarometry, differential block movements, and crustal, structure of the southwestern Abitibi greenstone belt, Canada; Geology 18(9) 870–873.

    Article  Google Scholar 

  • Fralick P W and Kronberg B I 1997 Geochemical discrimination of clastic sedimentary rock sources; Sedim. Geol. 113(1–2) 111–124.

    Article  Google Scholar 

  • Franzini M, Leoni L and Saitta M 1972 A simple method to evaluate the matrix effects in X-Ray fluorescence analysis; X Ray Spectrom. 1 151–154, https://doi.org/10.1002/xrs.1300010406.

  • Garver J I and Scott T J 1995 Trace elements in shale as indicators of crustal provenance and terrain accretion in south Canadian Cordillera; Geol. Soc. Am. Bull. 107 440–453, https://doi.org/10.1130/0016-7606(1995)107<0440:TEISAI>2.3.CO;2.

    Article  Google Scholar 

  • Götze J and Lewis R 1994 Distribution of REE and trace elements in size and mineral fractions of high-purity quartz sands; Chem. Geol. 114 43–57, https://doi.org/10.1016/0009-2541(94)90040-X.

    Article  Google Scholar 

  • Herron M M 1988 Geochemical classification of terrigenous sands and shales from core or log data; J. Sedim. Petrol. 58 820–829, https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Hester N C 1974 Post-depositional subaerial weathering effects on the mineralogy of an Upper Cretaceous sand in southeastern United States; J. Sedim. Res. 44(2) 363–373, https://doi.org/10.1306/74D72A31-2B21-11D7-8648000102C1865D.

  • Horbe A M C, Horbe M A and Suguio K 2004 Tropical spodosols in northeastern Amazonas State, Brazil; Geoderma 119 55–68, https://doi.org/10.1002/arp.1829.

    Article  Google Scholar 

  • Hubert J F 1962 A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones; J. Sedim. Res. 32(3) 440–450.

  • Jackson M L 1956 Soil chemical analysis – advanced course; Dept. of Soils, Univ. Wisconsin, Madison.

  • Jain M, Tandon S K and Bhatt S C 2004 Late Quaternary stratigraphic development in the lower Luni Mahi and Sabarmati river basins western India; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 453–471, https://doi.org/10.1007/BF02716736.

  • Keller W D 1962 Diagenesis in clay minerals – a review; Clays and Clay Minerals 11(1) 136–157, https://doi.org/10.1346/CCMN.1962.0110113.

    Article  Google Scholar 

  • Keller W D 1970a Environmental aspects of clay minerals; J. Sedim. Res. 40(3), https://doi.org/10.1306/74D720A4-2B21-11D7-8648000102C1865D.

  • Keller W D 1970b Environmental aspects of clay minerals; J. Sedim. Res. 40(3) 788–813.

    Google Scholar 

  • Kunze G W and Dixon J 1986 Pretreatment for mineralogical analysis. Methods soil analalysis, Part 1; Phys. Mineral. Methods 5 91–100.

    Google Scholar 

  • Li C and Yang S Y 2010 Is chemical index of alteration a reliable proxy for chemical weathering in global drainage basins?; Am. J. Sci. 310 111–127, https://doi.org/10.2475/02.2010.03.

  • Madhavaraju J, Ramírez-Montoya E, Monreal R, González-León C M, Pi-Puig T, Espinoza-Maldonado I G and Grijalva-Noriega F J 2016 Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry; Revista Mexicana de Ciencias Geológicas 33(1) 34–48.

    Google Scholar 

  • Maynard J B, Valloni R and Yu H S 1982 Composition of modern deep-sea sands arc related basins; In: Trench forearc geology: Sedimentation and tectonics on modern and ancient active plate margin (ed.) Leggett J K, Geol. Soc. London, Spec. Publ. 10 551–561.

  • McCann T 1998 Sandstone composition and provenance of the Rotliegend of the NE German Basin; Sedim. Geol. 116(3–4) 177–198.

    Article  Google Scholar 

  • McDonough W F and Sun S S 1995 The composition of the Earth; Chem. Geol. 120(3–4) 223–253.

  • McLennan S M and Taylor J R 1991 Sedimentary rocks and crustal evolution: Tectonic setting and secular trends; J. Geol. 99 1–21, https://doi.org/10.1086/629470.

    Article  Google Scholar 

  • McLennan S M, Nance W B and Taylor W B 1980 Rare-earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust; Geochim. Cosmochim. Acta 44 1833–1839, https://doi.org/10.1016/0016-7037(80)90232-X.

    Article  Google Scholar 

  • McLennan S M, Hemming S, McDaniel D K and Hanson G N 1993 Geochemical approaches to sedimentation, provenance and tectonics; In: Processes controlling the composition of clastic sediments (eds) Johnsson M J and Basu A, Geol. Soc. Am. Spec. Paper 284 21−40, https://doi.org/10.1130/SPE284-p21.

  • McLennan S M, Bock B, Compston W, Hemming S R and McDaniel D K 2001 Detrital zircon geochronology of Taconian and Acadian foreland sedimentary rocks in New England; J. Sedim. Res. 71(2) 305–317, https://doi.org/10.1306/072600710305.

  • Middelburg J J, Van Der Weijden C H and Woittiez J R W 1988 Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks; Chem. Geol. 68 253–273, https://doi.org/10.1016/0009-2541(88)90025-3.

    Article  Google Scholar 

  • Morthekai P and Ali S N 2014 Luminescence dating using quartz – for end-users; Gondwana Geol. Mag. 29 1–10.

    Google Scholar 

  • Morton A C 1985a A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea; Sedimentology 32(4) 553–566.

    Article  Google Scholar 

  • Morton J P 1985b Rb–Sr evidence for punctuated illite/smectite diagenesis in the Oligocene Frio Formation, Texas Gulf Coast; Geol. Soc. Am. Bull. 96 114–122, https://doi.org/10.1130/0016-7606(1985)96<114:REFPID>2.0.CO;2.

    Article  Google Scholar 

  • Myrow P M, Hughes N C, Derry L A, McKenzie N R, Jiang G, Webb A A G, Banerjee D M, Paulsen T S and Singh B S 2015 Neogene marine isotopic evolution and the erosion of Lsser Himalayan strata: Implications for Cenozoic tectonic history; Earth Planet. Sci. Lett. 417 142–150.

  • Nagarajan R, Armstrong-Altrin J S, Nagendra R, Madhavaraju J and Moutte J 2007a Petrography and geochemistry of terrigenous sedimentary rocks in the Neo-proterozoic Rabanpalli Formation, Bhima Basin, southern India: Implications for paleoweathering condition, provenance, and source rock composition; J. Geol. Soc. India 70 297–312.

    Google Scholar 

  • Nagarajan R, Madhavaraju J, Nagendra R, Armstrong-Altrin J S and Moutte J 2007b Geochemistry of Neoproterozoic shales of Rabanpalli Formation, Bhima Basin, northern Karnataka, southern India: Implications for provenance and paleoredox conditions; Revista Mexicana de Ciencias Geologicas 24 150–160, https://hal-emse.ccsd.cnrs.fr/emse-00612104.

  • Nesbitt H W and Young G M 1982 Early proterozoic climates and plate motions inferred from major element chemistry of lutites; Nature 299 715–717, https://doi.org/10.1038/299715a0.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1984 Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations; Geochim; Cosmochim. Acta 48 1523–1534, https://doi.org/10.1016/0016-7037(84)90408-3.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1989 Formation and diagenesis of weathering profiles; J. Geol. 97 129–147, https://www.jstor.org/stable/30065535.

  • Nesbitt H W, Young G M, McLennan S M and Keays R R 1996 Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies; J. Geol. 104(5) 525–542.

    Article  Google Scholar 

  • Oliva P, Viers J, Dupré B, Fortuné J P, Martin F, Braun J J, Nahon D and Robain H 1999 The effect of organic matter on chemical weathering: Study of a small tropical watershed: Nsimi-Zoetele site, Cameroon; Geochim. Cosmochim. Acta 63(23–24) 4013–4035, https://doi.org/10.1016/S0016-7037(99)00306-3.

    Article  Google Scholar 

  • Pettijohn F J 1972 The Archean of the Canadian shield: A resume; https://doi.org/10.1130/MEM135-p131.

  • Pettijohn F J, Potter P E and Siever R 1972 Sand and sandstone; Springer-Verlag, New York, 618p.

    Google Scholar 

  • Pettijohn F J, Potter P E and Siever R 1973 Sand and sandstones; Springer Verlag, New York; https://doi.org/10.1007/978-1-4615-9974-6.

  • Prescott J R and Hutton J T 1994 Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations; Radiat. Meas. 23 497–500.

    Article  Google Scholar 

  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F and Draganits E 2005 Himalayan architecture constrained by isotopic tracers from clastic sediments; Earth Planet. Sci. Lett. 236(3–4) 773–796, https://doi.org/10.1016/j.epsl.2005.05.034.

  • Roscher B P and Korsch R J 1986 Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio; J. Geol. 94 635–650, https://doi.org/10.1086/629071.

    Article  Google Scholar 

  • Roser B P and Korsch R J 1988 Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data; Chem. Geol. 67 119–139, https://doi.org/10.1016/0009-2541(88)90010-1.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2003 Composition of the continental crust; Treatise on Geochemistry, pp. 1–64, ISBN (set): 0-08-043751-6, 3 (ISBN: 0-08-0044338-9).

  • Saxena A, Trivedi A, Chauhan M S and Sharma A 2015 Holocene vegetation and climate change in Central Ganga Plain: A study based on multiproxy records from Chaudhary-Ka-Tal Raebareli District, Uttar Pradesh, India; Quat. Int. 371 164–174.

    Article  Google Scholar 

  • Sharma S, Joachimski M M, Tobschall H J, Singh I B, Sharma C and Chauhan M S 2004 Correlative evidences of monsoon variability, vegetation change and human inhabitation in Sanai Lake deposit: Ganga Plain, India; Curr. Sci. 90 973–978.

    Google Scholar 

  • Singh I B 1996 Geological evolution of Ganga Plain – An overview; J. Palaeontol. Soc. India 41 99–137.

    Google Scholar 

  • Singh P 2009 Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes; Chem. Geol. 266(3–4) 242–255, https://doi.org/10.1016/j.chemgeo.2009.06.013.

  • Singh P 2010 Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India; Chem. Geol. 269(3–4) 220–236.

    Article  Google Scholar 

  • Singh P and Rajamani V 2001a Geochemistry of the Kaveri flood plain sediments, southern India; J. Sedim. Res. 711 50–60.

    Article  Google Scholar 

  • Singh P and Rajamani V 2001b REE Geochemistry of recent clastic sediments from the Kaveri floodplains, southern India: Implication to source area weathering and sedimentary processes; Geochim. Cosmochim. Acta 65 3093–3108.

    Article  Google Scholar 

  • Singh A and Sinha R 2019 Fluvial response to climate change inferred from sediment cores from the Ghaggar–Hakra paleochannel in NW Indo–Gangetic plains; Palaeogeogr. Palaeoclimatol. Palaeoecol. 532 109247.

    Article  Google Scholar 

  • Singh I B, Rajagopalan G, Agarwal K K, Srivastava P, Sharma M and Sharma S 1997 Evidence of Middle to Late Holocene neotectonic activity in the Ganga Plain; Curr. Sci. 73(12) 1114–1117.

    Google Scholar 

  • Singh A, Paul D, Sinha R, Thomsen K J and Gupta S 2016 Geochemistry of buried river sediments from Ghaggar Plains, NW India: Multi-proxy records of variations in provenance, paleoclimate, and paleovegetation patterns in the Late Quaternary; Palaeogeogr. Palaeoclimatol. Palaeoecol. 449 85–100, https://doi.org/10.1016/j.paleo.2016.02.012.

    Article  Google Scholar 

  • Singh A, Jain V, Danino M, Chauhan N, Kaushal R K, Guha S and Prabhakar V N 2021 Larger floods of Himalayan foothill rivers sustained flows in the Ghaggar–Hakra channel during Harappan age; J. Quat. Sci. 36(4) 611–627, https://doi.org/10.1002/jqs.3320.

  • Sinha S, Islam R, Ghosh S K, Kumar R and Sangode S J 2007 Geochemistry of Neogene Siwalik mudstones along Punjab re-entrant, India: Implications for source-area weathering, provenance and tectonic setting; Curr. Sci. 92(8) 1103–1113, http://www.jstor.org/stable/24097629.

  • Sinha R, Yadav G S, Gupta S, Singh A and Lahiri S K 2013 Geo-electric resistivity evidence for subsurface paleochannel systems adjacent to Harappan sites in northwest India; Quat. Int. 308 66–75, https://doi.org/10.1016/j.quaint.2012.08.002.

    Article  Google Scholar 

  • Tang Y, Sang L, Yuan Y, Zhang Y and Yang Y 2012 Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi Basin, western China: Implications for source weathering, provenance and tectonic setting; Geosci. Frontiers 3(5) 647–660, https://doi.org/10.1016/j.gsf.2012.01.006.

  • Taylor S R and McLennan S M 1981 The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks; Philos. A301 381–399, https://doi.org/10.1098/rsta.1981.0119.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1983 Geochemistry of early Proterozoic sedimentary rocks and the Archean/Proterozoic boundary; Proterozoic geology: Selected papers from an international Proterozoic symposium: Geol. Soc. Am., Memoir 161 119–131.

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwell Publishers, 312p.

  • Thomas M, Thorp M and McAlister J 1999 Equatorial weathering, landform development and the formation of white sands in northwestern Kalimantan, Indonesia; Catena 36 205–232, https://doi.org/10.1016/S0341-8162(99)00014-4.

    Article  Google Scholar 

  • Thussu J L 1995 Quaternary stratigraphy and sedimentation of the Indo-Gangetic plains, Haryana; J. Geol. Soc. India 46(5) 533–543.

    Google Scholar 

  • Tripathi J K and Rajamani V 2003 Geochemistry of Proterozoic Delhi quartzites: Implications for the provenance and source area weathering; Geol. Soc. India 62(2) 215–226.

  • Tripathi J K, Bock B, Rajamani V and Eisenhauer J 2004 Is river Ghaggar, Saraswati? Geochemical constraints; Curr. Sci. 87 1141–1145, http://doi.org/0011-3891.

  • Trivedi A, Chauhan M S, Sharma A, Nautiyal C M and Tiwari D P 2013 Record of vegetation and climate during Late Pleistocene–Holocene in Central Ganga Plain based on multiproxy data from Jalesar Lake Uttar Pradesh India; Quat. Int. 306 97–106.

    Article  Google Scholar 

  • Valdiya K S 2003 Reactivation of Himalayan frontal fault: Implications; Curr. Sci. 85(7) 1031–1040.

    Google Scholar 

  • Valdiya K S 2005 Trans Himadari Fault: Tectonics of detachment system in Central Sector of Himalaya, India; J. Geol. Soc. India 1–2 53–63.

    Google Scholar 

  • Valdiya K S 2013 The River Saraswati was a Himalayan-born river; Curr. Sci. 104 42–54.

    Google Scholar 

  • Valdiya K S 2015 The making of India: Geodynamic evolution; Springer.

  • Valdiya K S 2016 Prehistoric river Saraswati: Geological appraisal and social aspects; Springer, 136p.

  • Van Loon A J and Mange A M 2007 “In situ” dissolution of heavy minerals through extreme weathering, and the application of the surviving assemblages and their dissolution characteristics to correlation of Dutch and German silver sands; Dev. Sedimentol. Ser. 58 189–213, https://doi.org/10.1016/S0070-4571(07)58006-4.

    Article  Google Scholar 

  • Vannay J-C, Grasemann B, Rahn M, Frank W, Carter A, Baudraz V and Cosca M 2004 Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion; Tectonics 23(1) 1–24.

  • Vital H, Stattegger K and Garbe-Schoenberg C D 1999 Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon River: A provenance study; J. Sedim. Res. 69(3) 563–575, https://doi.org/10.2110/jsr.69.563.

    Article  Google Scholar 

  • Wallinga J 2002 Optically stimulated luminescence dating of fluvial deposits: A review; Boreas 31 303–322.

    Article  Google Scholar 

  • Webb A A G, Yin A, Harrison T M, Célérier J, Gehrels G E, Manning C E and Grove M 2011 Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen; Geosphere 7(4) 1013–1061.

  • Whitmore G P, Crook K A W and Johnson D 2004 Grain size control of mineralogy and geochemistry in modern river sediment, New Guinea collision, Papua New Guinea; Sedim. Geol. 171 129–157, https://doi.org/10.1016/j.sedgeo.2004.03.011.

    Article  Google Scholar 

  • Wronkiewicz D J and Condie K C 1987 Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance; Geochim. Cosmochim. Acta 51(9) 2401–2416, https://doi.org/10.1016/0016-7037(87)90293-6.

  • Wyborn L A and Chappell B W 1983 Chemistry of the Ordovician and Silurian greywackes of the Snowy Mountains, southeastern Australia: An example of chemical evolution of sediments with time; Chem. Geol. 39(1–2) 81–92, https://doi.org/10.1016/0009-2541(83)90073-6.

    Article  Google Scholar 

  • Yashpal S B, Sood R K and Agrawal D P 1980 Remote sensing of the ‘lost’ Saraswati’ river; Proc. Indian Acad. Sci. (Earth Planet Sci.) 89 317–331.

    Google Scholar 

  • Yin A 2006 Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation; Earth-Sci. Rev. 76(1–2) 1–131.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Tarasha Chitkara has carried out the grain size analysis, heavy mineral analysis and geochemical analysis. She also contributed in the interpretation of the data and drafting of the manuscript with the help of Anupam Sharma. Geochemical interpretation was done by Anupam Sharma. O P Thakur and N N Dogra contributed to concluding and framing the paper.

Corresponding author

Correspondence to Tarasha Chitkara.

Additional information

Communicated by George Mathew

Corresponding editor: George Mathew

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitkara, T., Sharma, A., Thakur, O.P. et al. Geochemistry of the Bhor Saidan alluvial plains in Haryana state of north India: Implications for catchment weathering, provenance, and tectonic setting. J Earth Syst Sci 132, 151 (2023). https://doi.org/10.1007/s12040-023-02155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02155-5

Keywords

Navigation