Skip to main content

Advertisement

Log in

Estimation of glacier depth and ice volume of Kabul Basin, Afghanistan

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Kabul Basin in the Hindukush–Karakoram–Himalaya (HKH) consists of 3097 glaciers that are crucial for Afghanistan’s irrigation and hydrological needs. However, they are rapidly shrinking and the consequences of this melting result in a shortage of water availability and glacial lake development. Due to the rugged and complex topography of the area and the existing geopolitical situations, the study of ice volume and thickness of the Kabul Basin is minimal compared to other regions of HKH. Therefore, this study estimates glaciers' depth and volume in the Kabul Basin using volume area scaling and laminar flow methods. The glacier depth and volume of 290 large glaciers (area >1 km2) are estimated using laminar flow equations by considering surface velocity, and slope. The study finds that the region shows a mean surface velocity of 15.30 ± 0.04 m/yr and a mean depth of 47.28 ± 6.43 m. Volume–area (V–A) scaling methods are used to estimate the glacier volume for the remaining 2807 smaller glaciers. The analysis reveals that the Kabul basin holds a total glacier stored water of 119.69 ± 22.26 km3, equivalent to 107.72 ± 20 Gigatonne ice mass. This study is significant as it can help manage the country's water resources and disaster risk reduction.

Research highlights

  • Detailed study of glaciers of Kabul Basin is described in this article.

  • The glacier depth and glacier stored water of Kabul Basin are estimated using laminar flow and Volume-Area Scaling method.

  • The Kabul glaciers have a mean ice surface velocity of 15.30 ± 0.04 m/yr and mean glacier depth of 47.28 ± 6.43 m.

  • The basin holds a total glacier stored water of 107.72 ± 20 Gigatonne.

  • The article describes the possibilities of remote sensing and Geographic Information System (GIS) techniques in glacier studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Ambinakudige S and Joshi K 2012 Remote sensing of cryosphere; Remote Sens.-Appl. (ed.) Boris Escalante, pp. 369–380.

  • Ayoub F, Leprince S and Keene L 2009 User’s guide to COSI-CORR co-registration of optically sensed images and correlation; California Institute of Technology: Pasadena, CA, USA 38 49.

    Google Scholar 

  • Bahr D B, Meier M F and Peckham S D 1997 The physical basis of glacier volume-area scaling; J. Geophys. Res. Solid Earth 102(B9) 20,355–20,362.

    Article  Google Scholar 

  • Bahr D B, Pfeffer W T and Kaser G 2015 A review of volume-area scaling of glaciers; Rev. Geophys. 53(1) 95–140.

    Article  Google Scholar 

  • Bahuguna I M, Kulkarni A V, Nayak S, Rathore B P, Negi H S and Mathur P 2007 Himalayan glacier retreat using IRS 1C PAN stereo data; Int. J. Remote Sens. 28(2) 437–442, https://doi.org/10.1080/01431160500486674.

    Article  Google Scholar 

  • Bajracharya S R, Maharjan S B, Shrestha F, Guo W, Liu S, Immerzeel W and Shrestha B 2015 The glaciers of the Hindu Kush Himalayas: Current status and observed changes from the 1980s to 2010; Int. J. Water Resourc. Dev. 31(2) 161–173, https://doi.org/10.1080/07900627.2015.1005731.

    Article  Google Scholar 

  • Bajracharya S R and Shrestha B R 2011 The status of glaciers in the Hindu Kush–Himalayan region; International Centre for Integrated Mountain Development (ICIMOD).

  • Bilal H, Chamhuri S, Bin Mokhtar M and Kanniah K D 2019 Recent snow cover variation in the Upper Indus Basin of Gilgit Baltistan, Hindukush Karakoram Himalaya; J. Mountain Sci. 16(2) 296–308, https://doi.org/10.1007/s11629-018-5201-3.

    Article  Google Scholar 

  • Budd W F and Allison I F 1975 An empirical scheme for estimating the dynamics of unmeasured glaciers; Proc. Moscow Symposium ‘Snow and Ice’, pp. 246–256.

  • Chen J and Ohmura A 1990 Estimation of Alpine glacier water resources and their change since the 1870s; IAHS Publ. 193 127–135.

    Google Scholar 

  • Cuffey K M and Paterson W S B 2010 The physics of glaciers; Academic Press.

    Google Scholar 

  • Du M, Kawashima S, Yonemura S, Zhang X and Chen S 2004 Mutual influence between human activities and climate change in the Tibetan Plateau during recent years; Global Planet. Change 41(3) 241–249, https://doi.org/10.1016/j.gloplacha.2004.01.010.

    Article  Google Scholar 

  • Echelmeyer K A and Kamb B 1986 Stress-gradient coupling in glacier flow: II. Longitudinal averaging in the flow response to small perturbations in ice thickness glacier depth and surface slope; J. Glaciol. 32(111) 285–298, https://doi.org/10.3189/S0022143000015616.

    Article  Google Scholar 

  • Farinotti D, Huss M, Bauder A, Funk M and Truffer M 2009 A method to estimate the ice volume and ice-thickness distribution of alpine glaciers; J. Glaciol. 55(191) 422–430, https://doi.org/10.3189/002214309788816759.

    Article  Google Scholar 

  • Farinotti D, Brinkerhoff D J, Clarke G K C, Fürst J J and Frey H et al. 2017 How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison experiment; The Cryosphere 11(2) 949–970, https://doi.org/10.5194/tc-11-949-2017.

    Article  Google Scholar 

  • Farinotti D, Huss M, Fürst J J, Landmann J, Machguth H, Maussion F and Pandit A 2019 A consensus estimate for the ice thickness distribution of all glaciers on Earth; Nature Geosci. 12(3) 168–173, https://doi.org/10.1038/s41561-019-0300-3.

    Article  Google Scholar 

  • Frey H, Machguth H, Huss M, Huggel C, Bajracharya S, Bolch T, Kulkarni A, Linsbauer A, Salzmann N and Stoffel M 2014 Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods; The Cryosphere 8(6) 2313–2333, https://doi.org/10.5194/tc-8-2313-2014.

    Article  Google Scholar 

  • Gantayat P, Kulkarni A V and Srinivasan J 2014 Estimation of ice thickness using surface velocities and slope: Case study at Gangotri Glacier, India; J. Glaciol. 60(220) 277–282, https://doi.org/10.3189/2014JoG13J078.

    Article  Google Scholar 

  • Gao H, Zou X, Wu J, Zhang Y, Deng X, Hussain S, Wazir M A and Zhu G 2020 Post-20th century near-steady state of Batura Glacier: Observational evidence of Karakoram Anomaly; Sci. Rep. 10(1) 987, https://doi.org/10.1038/s41598-020-57660-0.

    Article  Google Scholar 

  • Gopika J S, Kulkarni A V, Prasad V, Srinivasalu P and Raman A 2021 Estimation of glacier stored water in the Bhaga basin using laminar flow and volume-area scaling methods; Remote Sens. Appl. Soc. Environ. 24 100656, https://doi.org/10.1016/j.rsase.2021.100656.

    Article  Google Scholar 

  • Haeberli W and Hoelzle M 1995 Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps; Ann. Glaciol. 21 206–212, https://doi.org/10.3189/S0260305500015834.

    Article  Google Scholar 

  • Haq M A, Jain K and Menon K P R 2012 Change monitoring of Gangotri Glacier using remote sensing; Int. J. Soft Comput. Eng. (IJSCE) 1(6).

  • Houben G, Niard N, Tünnermeier T and Himmelsbach T 2009 Hydrogeology of the Kabul Basin (Afghanistan). Part I: Aquifers and hydrology; Hydrogeol. J. 17(3) 665–677.

    Article  Google Scholar 

  • Huss M and Farinotti D 2012 Distributed ice thickness and volume of all glaciers around the globe; J. Geophys. Res.: Earth Surface 117(F4).

  • Immerzeel W W, van Beek L P H and Bierkens M F P 2010 Climate change will affect the Asian Water Towers; Science 328(5984) 1382–1385, https://doi.org/10.1126/science.1183188.

    Article  Google Scholar 

  • Ives J D, Shrestha R B and Mool P K 2010 Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment; ICIMOD, Kathmandu.

    Book  Google Scholar 

  • Joya E, Bromand M T, Murtaza K O and Dar R A 2021 Current glacier status and ELA changes since the Late Pleistocene in the Hindu Kush Mountains of Afghanistan; J. Asian Earth Sci. 219 104897, https://doi.org/10.1016/j.jseaes.2021.104897.

    Article  Google Scholar 

  • Kamb B and Echelmeyer K A 1986 Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope; J. Glaciol. 32(111) 267–284, https://doi.org/10.3189/S0022143000015604.

    Article  Google Scholar 

  • Kulkarni A V, Bahuguna I M, Rathore B P, Singh S K, Randhawa S S, Sood R K and Dhar S 2007 Glacial retreat in Himalaya using Indian remote sensing satellite data; Curr. Sci. 92 69–74.

    Google Scholar 

  • Kulkarni A V, Bahuguna M and Rathore B P 2009 Application of remote sensing to monitor glaciers; NNRMS Bull. 33 79–82.

    Google Scholar 

  • Kulkarni A V, Rathore B P, Singh S K and Bahuguna I M 2011 Understanding changes in the Himalayan cryosphere using remote sensing techniques; Int. J. Remote Sens. 32(3) 601–615, https://doi.org/10.1080/01431161.2010.517802.

    Article  Google Scholar 

  • Kulkarni A, Ajanta G, Raaj R, Gulab S, Ajai D, Pradeep S, Ramya N, Nagashri K, Arya R and Anisha G 2019 Himalayan Glacier Thickness Mapper (HIGTHIM) User Manual.

  • Kulkarni A, Prasad V, Shirsat T, Chaturvedi R K and Bahuguna I M 2021 Impact of Climate Change on the Glaciers of Spiti River Basin, Himachal Pradesh, India; J. Indian Soc. Remote Sens. 49(8) 1951–1963, https://doi.org/10.1007/s12524-021-01368-9.

    Article  Google Scholar 

  • Leprince S, Barbot S, Ayoub F and Avouac J-P 2007 Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements; IEEE Trans. Geosci. Remote Sens. 45(6) 1529–1558, https://doi.org/10.1109/TGRS.2006.888937.

    Article  Google Scholar 

  • Li H, Ng F, Li Z, Qin D and Cheng G 2012 An extended ‘perfect‐plasticity’ method for estimating ice thickness along the flow line of mountain glaciers; J. Geophys. Res.: Earth Surface 117(F1).

  • Linsbauer A, Paul F, Hoelzle M, Frey H, Haeberli W and Purves R S 2009 The Swiss Alps without glaciers – a GIS-based modelling approach for reconstruction of glacier beds; In: Proceedings of Geomorphometry (ed.) Purves Ross S et al., Department of Geography, University of Zurich, Zurich, CH, pp. 243–247.

    Google Scholar 

  • Maanya U S, Kulkarni A V, Tiwari A, Bhar E D and Srinivasan J 2016 Identification of potential glacial lake sites and mapping maximum extent of existing glacier lakes in Drang Drung and Samudra Tapu glaciers, Indian Himalaya; Curr. Sci. 111(3) 553–560.

    Article  Google Scholar 

  • Maharjan S B, Mool P K, Lizong W, Xiao G, Shrestha F, Shrestha R B, Khanal N R, Bajracharya S R, Joshi S and Shai S 2018 The Status of Glacial Lakes in the Hindu Kush Himalaya-ICIMOD Research Report 2018/1; International Centre for Integrated Mountain Development (ICIMOD).

  • Maharjan S B, Joya E, Rahimi M M, Azizi F, Muzafari K A, Bariz M, Bromand M T, Shrestha F, Shokory A G and Anwari A 2021a Glaciers in Afghanistan: Status and changes from 1990 to 2015; ICIMOD Publication, 72p.

  • Maharjan S B, Shrestha F, Azizi F, Joya E, Bajracharya B, Bromand M T and Rahimi M M 2021b Monitoring of glaciers and glacial lakes in Afghanistan; In: Earth Observation Science and Applications for Risk Reduction and Enhanced Resilience in Hindu Kush Himalaya Region Springer Cham., pp. 211–230.

  • Molden D J, Vaidya R A, Shrestha A B, Rasul G and Shrestha M S 2014 Water infrastructure for the Hindu Kush Himalayas; Int. J. Water Resourc. Dev. 30(1) 60–77, https://doi.org/10.1080/07900627.2013.859044.

    Article  Google Scholar 

  • Mukherji A, Sinisalo A, Nüsser M, Garrard R and Eriksson M 2019 Contributions of the cryosphere to mountain communities in the Hindu Kush Himalaya: A review; Regional Environ. Change 19(5) 1311–1326, https://doi.org/10.1007/s10113-019-01484-w.

    Article  Google Scholar 

  • Nuimura T, Sakai A, Taniguchi K, Nagai H, Lamsal D, Tsutaki S, Kozawa A, Hoshina Y, Takenaka S, Omiya S, Tsunematsu K, Tshering P and Fujita K 2015 The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers; The Cryosphere 9(3) 849–864, https://doi.org/10.5194/tc-9-849-2015.

    Article  Google Scholar 

  • Nye J F 1952a A method of calculating the thicknesses of the ice-sheets; Nature 169(4300) 529–530, https://doi.org/10.1038/169529a0.

    Article  Google Scholar 

  • Nye J F 1952b The mechanics of glacier flow; J. Glaciol. 2(12) 82–93, https://doi.org/10.3189/S0022143000033967.

    Article  Google Scholar 

  • Nye J F 1965 The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section; J. Glaciol. 5(41) 661–690, https://doi.org/10.3189/S0022143000018670.

    Article  Google Scholar 

  • Oerlemans J 1989 On the response of valley glaciers to climatic change; Glacier fluctuations and climatic change, Springer, pp. 353–371.

  • Pandit A and Ramsankaran R 2020 Modeling ice thickness distribution and storage volume of glaciers in Chandra Basin, western Himalayas; J. Mountain Sci. 17(8) 2011–2022, https://doi.org/10.1007/s11629-019-5718-y.

    Article  Google Scholar 

  • Pfeffer W T, Arendt A A, Bliss A, Bolch T, Cogley J G, Gardner A S, Hagen J-O, Hock R, Kaser G, Kienholz C, Miles E S, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup B H, Rich J and Sharp M J 2014 The Randolph Glacier Inventory: A globally complete inventory of glaciers; J. Glaciol. 60(221) 537–552, https://doi.org/10.3189/2014JoG13J176.

    Article  Google Scholar 

  • Prasad V, Kulkarni A V, Pradeep S, Pratibha S, Tawde S A, Shirsat T, Arya A R, Orr A and Bannister D 2019 Large losses in glacier area and water availability by the end of twenty-first century under high emission scenario, Satluj basin, Himalaya; Curr. Sci. 116(10) 1721–1730.

    Article  Google Scholar 

  • Radić V, Hock R and Oerlemans J 2008 Analysis of scaling methods in deriving future volume evolutions of valley glaciers; J. Glaciol. 54(187) 601–612, https://doi.org/10.3189/002214308786570809.

    Article  Google Scholar 

  • Rasmussen L A 1988 Bed topography and mass-balance distribution of Columbia glacier, Alaska, U.S.A., determined from sequential aerial photography; J. Glaciol. 34(117) 208–216, https://doi.org/10.3189/S0022143000032251.

    Article  Google Scholar 

  • Rasul G 2014 Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region; Environ. Sci. Policy 39 35–48, https://doi.org/10.1016/j.envsci.2014.01.010.

    Article  Google Scholar 

  • Remya S N, Kulkarni A V, Pradeep S and Shrestha D G 2019 Volume estimation of existing and potential glacier lakes, Sikkim Himalaya, India; Curr. Sci. 116(4) 620–627.

    Article  Google Scholar 

  • Ren Y-Y, Ren G-Y, Sun X-B, Shrestha A B, You Q-L, Zhan Y-J, Rajbhandari R, Zhang P-F and Wen K-M 2017 Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years; Adv. Clim. Change Res. 8(3) 148–156, https://doi.org/10.1016/j.accre.2017.08.001.

    Article  Google Scholar 

  • Sakai A 2019 Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia; The Cryosphere 13(7) 2043–2049, https://doi.org/10.5194/tc-13-2043-2019.

    Article  Google Scholar 

  • Salerno F, Thakuri S, Tartari G, Nuimura T, Sunako S, Sakai A and Fujita K 2017 Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers; Earth Planet Sci. Lett. 471 19–31, https://doi.org/10.1016/j.epsl.2017.04.039.

    Article  Google Scholar 

  • Sarıkaya M A 2012 Recession of the ice cap on Mount Ağrı (Ararat), Turkey, from 1976 to 2011 and its climatic significance; J. Asian Earth Sci. 46 190–194, https://doi.org/10.1016/j.jseaes.2011.12.009.

    Article  Google Scholar 

  • Sellevold M A and Kloster K 1964 Seismic measurements on the glacier Hardangerjøkulen, Western Norway; Nor. Polarinst. Årb, pp. 87–91.

  • Shroder J F and Bishop M P 2010 Glaciers of Afghanistan; In: Satellite Image Atlas of Glaciers (eds) Williams R S Jr and Ferrigno J G, U.S. Geological Survey, Professional Paper 1386-F-3.

  • Singh K K, Singh D K, Negi H S, Kulkarni A V, Gusain H S, Ganju A and Babu Govindha Raj K 2018 Temporal change and flow velocity estimation of Patseo glacier, Western Himalaya, India; Curr. Sci. 114(4) 776–784.

    Article  Google Scholar 

  • Singh K K, Negi H S and Singh D K 2019 Assessment of glacier stored water in Karakoram Himalaya using satellite remote sensing and field investigation; J. Mount. Sci. 16(4) 836–849, https://doi.org/10.1007/s11629-018-5121-0.

    Article  Google Scholar 

  • Swain A K, Mukhtar M A, Majeed Z and Shukla S P 2018 Depth profiling and recessional history of the Hamtah and Parang glaciers in Lahaul and Spiti, Himachal Pradesh, Indian Himalaya; Geol. Soc. London, Spec. Publ. 462(1) 35–49.

    Article  Google Scholar 

  • Tahir A A, Chevallier P, Arnaud Y, Neppel L and Ahmad B 2011 Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan; J. Hydrol. 409(1) 104–117, https://doi.org/10.1016/j.jhydrol.2011.08.035.

    Article  Google Scholar 

  • ul Hassan S N, Reba M N M, Hussain D and Ali A 2018 Elevation dependent thickness and ice-volume estimation using satellite derived DEM for mountainous glaciers of Karakorum range; IOP Conf. Ser.: Earth Environ. Sci. 169(1) 012115.

    Article  Google Scholar 

  • van Tricht L, Huybrechts P, van Breedam J, Fürst J J, Rybak O, Satylkanov R, Ermenbaiev B, Popovnin V, Neyns R, Paice C M and Malz P 2021 Measuring and inferring the ice thickness distribution of four glaciers in the Tien Shan Kyrgyzstan; J. Glaciol. 67(262) 269–286, https://doi.org/10.1017/jog.2020.104.

    Article  Google Scholar 

  • Water N and Authority N E 1988 Report on first expedition to glaciers and glacier lakes in the Pumqu (Arun) and Poiqu (Bhote-Sun Kosi) river basins, Xizang (Tibet), China: appendix 1, maps.

  • Wester P, Mishra A, Mukherji A and Shrestha A B 2019 The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people; Springer Nature, 627p.

  • Williams R S 1994 Satellite image atlas of glaciers of the world; US Department of the Interior, US Geological Survey.

  • Zou X, Gao H, Zhang Y, Ma N, Wu J and bin Farhas S 2021 Quantifying ice storage in upper Indus river basin using ground-penetrating radar measurements and glacier bed topography model version 2; Hydrol. Process. 35(4) e14145.

    Article  Google Scholar 

Download references

Acknowledgements

We express our heartfelt gratitude to Divecha Centre for Climate Change and DST – Centre for Excellence in Climate Change, for supporting us with the facilities and funding required to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

Roja Asharaf has contributed to original draft preparation, conceptualization, investigation, methodology, software, validation, formal analysis, data curation, and visualization. Anil V Kulkarni has contributed to conceptualization, review and editing, formal analysis, supervision, and project administration.

Corresponding author

Correspondence to Roja Asharaf.

Additional information

Communicated by George Mathew

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asharaf, R., Kulkarni, A.V. Estimation of glacier depth and ice volume of Kabul Basin, Afghanistan. J Earth Syst Sci 132, 128 (2023). https://doi.org/10.1007/s12040-023-02145-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02145-7

Keywords

Navigation