Abstract
We present a detailed study of petrography, mineralogy, mineral chemistry and bulk chemistry of the Berduc L6 ordinary chondrite, which fell in 2008 in Colonia Berduc, Argentina. Modal abundance of the constituent phases is similar to the other L6 chondrites. The preserved phases of oxide and sulphide point towards a low-grade thermal metamorphism in Berduc parent body. Presence of melt veins and evidence of element redistribution in constituent phases indicate Berduc underwent localised melting processes, due to shock loading (S4). Further, highly volatile elements are depleted as compared to CI-chondrite. The heating process in Berduc parent mass took place in an open environment allowing volatiles to get lost from the system at low temperatures. These conditions enabled the preservation of pristine non-silicate assemblages. The fact that the bulk REE and refractory elements in Berduc are akin to that of the CI-chondrite, indicates that they were not mobilised from Berduc parent mass. The unfractionated pattern exhibited by the refractory and moderately volatile trace elements resembles that of an unequilibrated ordinary chondrite. Berduc parent body seems to have had a particular behaviour, as an open system allowing a substantial loss of the highly volatile elements and as a closed-system during and after the peak thermal metamorphism.
This is a preview of subscription content, access via your institution.






References
Alexander C M O D 1994 Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors; Geochim. Cosmochim. Acta 58(16) 3451–3467, https://doi.org/10.1016/0016-7037(94)90098-1.
Anders E 1968 Chemical processes in the early solar system, as inferred from meteorites; Acc. Chem. Res. 1(10) 289–298, https://doi.org/10.1021/ar50010a001.
Ashworth J R 1980 Chondrite thermal histories: Clues from electron microscopy of orthopyroxene; Earth Planet. Sci. Lett. 46(2) 167–177, https://doi.org/10.1016/0012-821X(80)90003-5.
Ashworth J R, Mallinson L G, Hutchison R and Biggar G M 1984 Chondrite thermal histories constrained by experimental annealing of Quenggouk orthopyroxene; Nature 308(5956) 259–261, https://doi.org/10.1038/308259a0.
Basu Sarbadhikari A, Babu E V S S K, Vijaya Kumar T and Aoudjehane H C 2016 Martian meteorite Tissint records unique petrogenesis among the depleted shergottites; Meteorit. Planet. Sci. 51(9) 1588–1610, https://doi.org/10.1111/maps.12684.
Basu Sarbadhikari A, Babu E V S S K and Vijaya Kumar T 2017 Chemical layering in the upper mantle of Mars: Evidence from olivine-hosted melt inclusions in Tissint; Meteorit. Planet. Sci. 52(2) 251–267, https://doi.org/10.1111/maps.12790.
Beitz E, Blum J, Parisi M G and Trigo-Rodríguez J 2016 The collisional evolution of undifferentiated asteroids and the formation of chondritic meteoroids; Astrophys. J. 824 12, https://doi.org/10.3847/0004-637X/824/1/12.
Bennett III M E and McSween H Y 1996 Shock features in iron-nickel metal and troilite of L-group ordinary chondrites; Meteorit. Planet. Sci. 31(2) 255–264, https://doi.org/10.1111/j.1945-5100.1996.tb02021.x.
Bhandari N, Murty S V S, Shukla P N, Mahajan R R, Shukla A D, Suthar K M, Parthasarathy G and Paliwal B S 2005 Bhawad LL6 chondrite: Chemistry, petrology, noble gases, nuclear tracks, and cosmogenic radionuclides; Meteorit. Planet. Sci. 40(7) 1015–1021, https://doi.org/10.1111/j.1945-5100.2005.tb00170.x.
Bhandari N, Murty S V S, Shukla P N, Mahajan R R, Shukla A D, Lashkari G, Sisodia M S, Tripathy R P, Parthasarathy G, Verma H C and Franchi I A 2008 Ararki (L5) chondrite: The first meteorite find in Thar Desert of India; Meteorit. Planet. Sci. 43(4) 761–770, https://doi.org/10.1111/j.1945-5100.2008.tb00683.x.
Bhandari N, Murty S V S, Mahajan R R, Parthasarathy G, Shukla P N, Sisodia M S and Rai V K 2009 Kaprada L (5/6) chondrite: Chemistry, petrography, noble gases and nuclear tracks; Planet. Space Sci. 57(14–15) 2048–2052, https://doi.org/10.1016/j.pss.2009.09.008.
Bischoff A and Stöffler D 1992 Shock metamorphism as a fundamental process in the evolution of planetary bodies: Information from meteorites; EJM 4 707–755, https://doi.org/10.1127/ejm/4/4/0707.
Bland P A, Collins G S, Davison T M, Abreu N M, Ciesla F J, Muxworthy A R and Moore J 2014 Pressure–temperature evolution of primordial solar system solids during impact-induced compaction; Nat. Commun. 5 5451, https://doi.org/10.1038/ncomms6451.
Blum J, Schrapler R, Davidsson B J R and Trigo‐Rodríguez J M 2006 The Physics of Protoplanetesimal Dust Agglomerates. I. Mechanical properties and relations to primitive bodies in the Solar System; Astrophys. J. 652 1768–1781, https://doi.org/10.1086/508017.
Bottke W F, Nesvorny D, Grimm R E, Morbidelli A and O’Brien D P 2006 Iron meteorites as remnants of planetesimals formed in the terrestrial planet region; Nature 439 821–824, https://doi.org/10.1038/nature04536.
Bouvier A, Blichert-Toft J, Moynier F, Vervoort J D and Albarède F 2007 Pb–Pb dating constraints on the accretion and cooling history of chondrites; Geochim. Cosmochim. Acta 71(6) 1583–1604, https://doi.org/10.1016/j.gca.2006.12.005.
Davison T M, Ciesla F J and Collins G S 2012 Post-impact thermal evolution of porous planetesimals; Geochim. Cosmochim. Acta 95 252–269, https://doi.org/10.1016/j.gca.2012.08.001.
Day J M D, Taylor L A, Floss C and McSween Jr H Y 2006 Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars; Meteorit. Planet. Sci. 41 581–606, https://doi.org/10.1111/j.1945-5100.2006.tb00484.x.
Dodd R T 1969 Metamorphism of the ordinary chondrites: A review; Geochim. Cosmochim. Acta 33(2) 161–203, https://doi.org/10.1016/0016-7037(69)90138-0.
Dunn T L, Cressey G, McSween Jr H Y and McCoy T J 2010a Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances; Meteorit. Planet. Sci. 45(1) 123–134, https://doi.org/10.1111/j.1945-5100.2009.01011.x.
Dunn T L, McSween Jr H Y, McCoy T J and Cressey G 2010b Analysis of ordinary chondrites using powder X-ray diffraction: 2. Applications to ordinary chondrite parent-body processes; Meteorit. Planet. Sci. 45(1) 135–156, https://doi.org/10.1111/j.1945-5100.2009.01012.x.
Dyl K A, Bischoff A, Ziegler K, Young E D, Wimmer K and Bland P A 2012 Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year time-scales; Proc. Natl. Acad. Sci. 109 18,306–18,311, https://doi.org/10.1073/pnas.1207475109.
Friedrich J M, Wang M-S and Lipschutz M E 2003 Chemical studies of L chondrites. V: Compositional patterns for 49 trace elements in 14 L4-6 and 7 LL4-6 falls; Geochim. Cosmochim. Acta 67(13) 2467–2479, https://doi.org/10.1016/S0016-7037(03)00024-3.
Friedrich J M, Bridges J C, Wang M-S and Lipschutz M E 2004 Chemical studies of L chondrites. VI: Variations with petrographic type and shock-loading among equilibrated falls; Geochim. Cosmochim. Acta 68(13) 2889–2904, https://doi.org/10.1016/j.gca.2004.01.010.
Friedrich J M, Perrotta G C and Kimura M 2014 Compositions, geochemistry, and shock histories of recrystallised LL chondrites; Geochim. Cosmochim. Acta 139 83–97, https://doi.org/10.1016/j.gca.2014.04.044.
Grossman J N and Brearley A J 2005 The onset of metamorphism in ordinary and carbonaceous chondrites; Meteorit. Planet. Sci. 40(1) 87–122, https://doi.org/10.1111/j.1945-5100.2005.tb00366.x.
Haas J R and Haskin L A 1991 Compositional variations among whole-rock fragments of the L6 chondrite Bruderheim; Meteoritics 26(1) 13–26, https://doi.org/10.1111/j.1945-5100.1991.tb01010.x.
Hutchison R 2006 Meteorites: A petrologic, chemical and isotopic synthesis; Cambridge University, Vol. 2, 506p, https://doi.org/10.1029/2005EO450009.
Jarosewich E 1990 Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses; Meteoritics 25(4) 323–337, https://doi.org/10.1111/j.1945-5100.1990.tb00717.x.
Jenniskens P, Rubin A E, Yin Q-Z, Sears D W G, Sandford S A, Zolensky M E, Krot A N, Blair L, Kane D, Utas J, Verish R, Friedrich J M, Wimpenny J, Eppich G R, Ziegler K, Verosub K L, Rowland D J, Albers J, Gural P S, Grigsby B, Fries M D, Matson R, Johnston M, Silber E, Brown P, Yamakawa A, Sanborn M E, Laubenstein M, Welten K C, Nishiizumi K, Meier M M M, Busemann H, Clay P, Caffee M W, Schmitt-Kopplin P, Hertkorn N, Glavin D P, Callahan M P, Dworkin J P, Wu Q, Zare R N, Grady M, Verchovsky S and Emel’Yanenko V, Naroenkov S, Clark D L, Girten B and Worden P S 2014 Fall, recovery, and characterization of the Novato L6 chondrite breccia; Meteorit. Planet. Sci. 49(8) 1388–1425, https://doi.org/10.1111/maps.12323.
Jenniskens P, Utas J, Yin Q-Z, Matson R D, Fries M, Howell J A, Free D, Albers J, Devillepoix H, Bland P, Miller A, Verish R, Garvie L A J, Zolensky M E, Ziegler K, Sanborn M E, Verosub K L, Rowland D J, Ostrowski D R, Bryson K, Laubenstein M, Zhou Q, Li Q-L, Li X-H, Liu Y, Tang G-Q, Welten K, Caffee M W, Meier M M M, Plant A A, Maden C, Busemann H and Granvik M 2019 The Creston, California, meteorite fall and the origin of L chondrites; Meteorit. Planet. Sci. 54(4) 699–720, https://doi.org/10.1111/maps.13235.
Jones R H 1990 Petrology and mineralogy of Type II, FeO-rich chondrules in Semarkona (LL3.0): Origin by closed-system fractional crystallisation, with evidence for supercooling; Geochim. Cosmochim. Acta 54(6) 1785–1802, https://doi.org/10.1016/0016-7037(90)90408-D.
Jones R H and Layne G D 1997 Minor and trace element partitioning between pyroxene and melt in rapidly cooled chondrules; Am. Mineral. 82(5–6) 534–545, https://doi.org/10.2138/am-1997-5-613.
Kallemeyn G W, Rubin A E, Wang D and Wasson J T 1989 Ordinary chondrites: Bulk compositions, classification, lithophile element fractionations, and composition-petrographic type relationships; Geochim. Cosmochim. Acta 53(10) 2747–2767, https://doi.org/10.1016/0016-7037(89)90146-4.
Kleine T, Munker C, Mezger K and Palme H 2002 Rapid accretion and early core formation on planetesimals and the terrestrial planets from Hf-W chronometry; Nature 418(6901) 952–955, https://doi.org/10.1038/nature00982.
Libourel G and Portail M 2018 Chondrules as direct thermochemical sensors of solar protoplanetary disk gas; Sci. Adv. 4(7) eaar3321, https://doi.org/10.1126/sciadv.aar3321.
Lindsley D H 1983 Pyroxene Thermometry; Am. Mineral. 68 477–493.
Lipschutz M E and Woolum D S 1988 Highly labile elements; In: Meteorites and the Early Solar System (eds) Kerridge J F and Matthews M S, Tucson, Univ. Arizona Press, pp. 462–487.
Lipschutz M E, Gaffey M J and Pellas P 1989 Meteoritic parent bodies: Nature, number, size and relation to present-day asteroids; In: Asteroids II (eds) Binzel R P, Gehrels T and Matthews M S, Univ. Arizona Press, pp. 740–777.
Lodders K 2003 Solar System abundances and condensation temperatures of the elements; Astrophys. J. 591(2) 1220–1247, https://doi.org/10.1086/375492.
Lodders K, Palme H and Gail H-P 2009 Abundances of the elements in the solar system; In: Astronomy, Astrophysics, and Cosmology – Solar System (eds) Trümper J E and Landolt-Börnstein, New Series, Springer, New York, VI/4B 560–630, https://doi.org/10.1007/978-3-540-88055-4_34.
Matza S and Lipschutz M 1977 Thermal metamorphism of primitive meteorites. VI – Eleven trace elements in Murchison C2 chondrite heated at 400–1000°C; Lunar Planet. Sci. Conf. Proc. 8 161–176.
McKay G A, Le L, Wagstaff J and Crozaz G 1994 Experimental partitioning of rare earth elements and strontium: Constraints on petrogenesis and redox conditions during crystallisation of Antarctic angrite Lewis Cliff 86010; Geochim. Cosmochim. Acta 58(13) 2911–2919, https://doi.org/10.1016/0016-7037(94)90124-4.
McSween Jr H Y, Sears D W G and Dodd R T 1988 Thermal metamorphism; In: Meteorites and the Early Solar System (eds) Kerridge J F and Matthews M S, Arizona, The University of Arizona Press, Tucson, pp. 102–113.
Miyamoto M, Fujii N and Takeda H 1982 Ordinary chondrite parent body – An internal heating model; Lunar Planet. Sci. Conf. Proc. 12 1145–1152.
Nakamuta Y and Motomura Y 1999 Sodic plagioclase thermometry of type 6 ordinary chondrites: Implications for the thermal histories of parent bodies; Meteorit. Planet. Sci. 34(5) 763–772, https://doi.org/10.1111/j.1945-5100.1999.tb01389.x.
Neal C W, Dodd R T, Jarosewich E and Lipschutz M E 1981 Chemical studies of L-chondrites – I. A study of possible chemical sub-groups; Geochim. Cosmochim. Acta 45(6) 891–898, https://doi.org/10.1016/0016-7037(81)90117-4.
Ouazaa N L, Perchiazzi N, D’Orazio M, Rochette P, Clocchiatti R and Folco L 2004 Beni M’hira: A new chondritic (L6) meteorite fall from Tunisia; Meteorit. Planet. Sci. 39(S8) A163–A169, https://doi.org/10.1111/j.1945-5100.2004.tb00353.x.
Pack A, Yurimoto H and Palme H 2004 Petrographic and oxygen-isotopic study of refractory forsterites from R-chondrite Dar al Gani 013 (R3.5-6), unequilibrated ordinary and carbonaceous chondrites; Geochim. Cosmochim. Acta 68(5) 1135–1157, https://doi.org/10.1016/j.gca.2003.07.014.
Pouchou J-L and Pichoir F 1991 Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”; In: Electron probe quantitation (eds) Heinrich K F J and Newbury D E, Springer, Boston, MA, https://doi.org/10.1007/978-1-4899-2617-3_4.
Rubin A E 1990 Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships; Geochim. Cosmochim. Acta 54(5) 1217–1232, https://doi.org/10.1016/0016-7037(90)90148-E.
Rubin A E 2004 Postshock annealing and postannealing shock in equilibrated ordinary chondrites: Implications for the thermal and shock histories of chondritic asteroids; Geochim. Cosmochim. Acta 68(3) 673–689, https://doi.org/10.1016/S0016-7037(03)00452-6.
Rubin A E 2005 Relationships among intrinsic properties of ordinary chondrites: Oxidation state, bulk chemistry, oxygen-isotopic composition, petrologic type, and chondrule size; Geochim. Cosmochim. Acta 69(20) 4907–4918, https://doi.org/10.1016/j.gca.2005.06.017.
Ruzicka A, Floss C and Hutson M 2008 Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials; Geochim. Cosmochim. Acta 72(22) 5530–5557, https://doi.org/10.1016/j.gca.2008.08.017.
Saikia B J, Parthasarathy G and Borah R R 2022 High-pressure polymorphs of olivine and silica in Kamargaon (L6) chondrite by laser micro-Raman and XRD studies; J. Earth Syst. Sci. 131(2) 38, https://doi.org/10.1007/s12040-021-01803-y.
Schaefer L and Fegley Jr B 2010 Volatile element chemistry during metamorphism of ordinary chondritic material and some of its implications for the composition of asteroids; Icarus 205 483–496, https://doi.org/10.1016/j.icarus.2009.08.025.
Stöffler D, Keil K and Edward R D S 1991 Shock metamorphism of ordinary chondrites; Geochim. Cosmochim. Acta 55(12) 3845–3867, https://doi.org/10.1016/0016-7037(91)90078-J.
Tonui E, Zolensky M and Lipschutz M 2002 Petrography, mineralogy and trace element chemistry of Yamato-86029 Yamato-793321 and Lewis Cliff 85332: Aqueous alteration and heating events; Antarct. Meteor. Res. 15 38.
Trigo-Rodríguez J M and Blum J 2009 Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies; Planet. Space Sci. 57 243–249, https://doi.org/10.1016/j.pss.2008.02.011.
Trigo-Rodríguez J M, Llorca J, Madiedo J M, Tancredi G, Edwards W N, Rubin A E and Weber P 2010 The Berduc L6 chondrite fall: Meteorite characterisation, trajectory, and orbital elements; Meteorit. Planet. Sci. 45(3) 383–393, https://doi.org/10.1111/j.1945-5100.2010.01029.x.
Trigo-Rodríguez J M, Rimola A, Tanbakouei S, Soto V C and Lee M 2019 Accretion of water in carbonaceous chondrites: Current evidence and implications for the delivery of water to early Earth; Space Sci. Rev. 215 18, https://doi.org/10.1007/s11214-019-0583-0.
Urey H C 1955 The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars; Proc. Natl. Acad. Sci. USA 41(3) 127–144, https://doi.org/10.1073/pnas.41.3.127.
Ward D, Bischoff A, Roszjar J, Berndt J and Whitehouse M J 2017 Trace element inventory of meteoritic Ca-phosphates; Am. Mineral. 102(9) 1856–1880, https://doi.org/10.2138/am-2017-6056.
Wasson J 1972 Formation of ordinary chondrites; Rev. Geophys. Space Phys. 10(3) 711–759, https://doi.org/10.1029/RG010i003p00711.
Acknowledgements
Financial support was provided by the Department of Space, Government of India. We are grateful to the editor for editorial handling and the two anonymous reviewers for paper reviews.
Author information
Authors and Affiliations
Contributions
ABS: Problem visualisation, laboratory analysis, data acquisition and tabulation, figure construction and manuscript writing. GA: Laboratory analysis, data acquisition and manuscript writing. MEV: Scientific input, figure construction and manuscript writing. RRM: Scientific input and manuscript writing.
Corresponding author
Additional information
Communicated by Ramananda Chakrabarti
Rights and permissions
About this article
Cite this article
Sarbadhikari, A.B., Arora, G., Varela, M.E. et al. Bulk and in-situ chemical analysis of meteorite Berduc, an L6 chondrite. J Earth Syst Sci 132, 21 (2023). https://doi.org/10.1007/s12040-022-02031-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12040-022-02031-8
Keywords
- L6 chondrite
- igneous melting
- preserved refractory non-silicates
- closed-system metamorphism